IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

GLS Detrending, Efficient Unit Root Tests and Structural Change

  • PERRON, Pierre
  • RODRIGUEZ, Gabriel

We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universite de Montreal, Departement de sciences economiques in its series Cahiers de recherche with number 9809.

in new window

Length: 45 pages
Date of creation: 1998
Date of revision:
Handle: RePEc:mtl:montde:9809
Contact details of provider: Postal: CP 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7
Phone: (514) 343-6540
Fax: (514) 343-5831
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence J. Christiano & Martin Eichenbaum, 1989. "Unit Roots in Real GNP: Do We Know, and Do We Care?," NBER Working Papers 3130, National Bureau of Economic Research, Inc.
  2. Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
  3. Lawrence J. Christiano, 1988. "Searching For a Break in GNP," NBER Working Papers 2695, National Bureau of Economic Research, Inc.
  4. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  5. repec:tpr:qjecon:v:102:y:1987:i:4:p:857-80 is not listed on IDEAS
  6. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Working Papers 2589, National Bureau of Economic Research, Inc.
  7. Vogelsang, Timothy J., 1997. "Wald-Type Tests for Detecting Breaks in the Trend Function of a Dynamic Time Series," Econometric Theory, Cambridge University Press, vol. 13(06), pages 818-848, December.
  8. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
  9. Perron, P. & Ng, S., 1994. "Useful Modifications to Some Unit Root Tests with Dependent Errors and Their Local Asymptotic Properties," Cahiers de recherche 9427, Universite de Montreal, Departement de sciences economiques.
  10. Perron, Pierre & Ng, Serena, 1998. "An Autoregressive Spectral Density Estimator At Frequency Zero For Nonstationarity Tests," Econometric Theory, Cambridge University Press, vol. 14(05), pages 560-603, October.
  11. Anindya Banerjee & Robin L. Lumsdaine & James H. Stock, 1990. "Recursive and Sequential Tests of the Unit Root and Trend Break Hypothesis: Theory and International Evidence," NBER Working Papers 3510, National Bureau of Economic Research, Inc.
  12. Bhargava, Alok, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Wiley Blackwell, vol. 53(3), pages 369-84, July.
  13. Perron, P., 1990. "Further Evidence On Breaking Trend Functions In Macroeconomics Variables," Papers 350, Princeton, Department of Economics - Econometric Research Program.
  14. Zivot, Eric & Andrews, Donald W K, 1992. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 251-70, July.
  15. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  16. Campbell, John & Perron, Pierre, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," Scholarly Articles 3374863, Harvard University Department of Economics.
  17. Campbell, John & Mankiw, Gregory, 1987. "Are Output Fluctuations Transitory?," Scholarly Articles 3122545, Harvard University Department of Economics.
  18. Perron, P, 1988. "The Great Crash, The Oil Price Shock And The Unit Root Hypothesis," Papers 338, Princeton, Department of Economics - Econometric Research Program.
  19. Mankiw, N. Gregory & Campbell, John, 1987. "Permanent and Transitory Components in Macroeconomic Fluctuations," Scholarly Articles 3207697, Harvard University Department of Economics.
  20. repec:tpr:qjecon:v:102:y:1987:i:4:p:797-814 is not listed on IDEAS
  21. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  22. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-74, January.
  23. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mtl:montde:9809. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.