IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v150y2009i2p288-296.html
   My bibliography  Save this article

Estimating the structural credit risk model when equity prices are contaminated by trading noises

Author

Listed:
  • Duan, Jin-Chuan
  • Fulop, Andras

Abstract

The transformed-data maximum likelihood estimation (MLE) method for structural credit risk models developed by Duan [Duan, J.-C., 1994. Maximum likelihood estimation using price data of the derivative contract. Mathematical Finance 4, 155-167] is extended to account for the fact that observed equity prices may have been contaminated by trading noises. With the presence of trading noises, the likelihood function based on the observed equity prices can only be evaluated via some nonlinear filtering scheme. We devise a particle filtering algorithm that is practical for conducting the MLE estimation of the structural credit risk model of Merton [Merton, R.C., 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29, 449-470]. We implement the method on the Dow Jones 30 firms and on 100 randomly selected firms, and find that ignoring trading noises can lead to significantly over-estimating the firm's asset volatility. The estimated magnitude of trading noise is in line with the direction that a firm's liquidity will predict based on three common liquidity proxies. A simulation study is then conducted to ascertain the performance of the estimation method.

Suggested Citation

  • Duan, Jin-Chuan & Fulop, Andras, 2009. "Estimating the structural credit risk model when equity prices are contaminated by trading noises," Journal of Econometrics, Elsevier, vol. 150(2), pages 288-296, June.
  • Handle: RePEc:eee:econom:v:150:y:2009:i:2:p:288-296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00225-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jarrow, Robert A. & Turnbull, Stuart M., 2000. "The intersection of market and credit risk," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 271-299, January.
    2. Luc Laeven, 2002. "Bank Risk and Deposit Insurance," World Bank Economic Review, World Bank Group, vol. 16(1), pages 109-137, June.
    3. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, April.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    6. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    7. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    8. Duan, Jin-Chuan & Yu, Min-Teh, 1995. "Assessing the cost of Taiwan's deposit insurance," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 139-139, May.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Ericsson, Jan & Reneby, Joel, 2003. "Valuing Corporate Liabilities," SIFR Research Report Series 15, Institute for Financial Research.
    11. Hasbrouck, Joel, 1993. "Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement," Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 191-212.
    12. Jin-Chuan Duan, 2000. "Correction: Maximum Likelihood Estimation Using Price Data of the Derivative Contract (Mathematical Finance 1994, 4/2, 155-167)," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 461-462.
    13. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    14. Harris, Lawrence, 1990. "Estimation of Stock Price Variances and Serial Covariances from Discrete Observations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(03), pages 291-306, September.
    15. Duan, Jin-Chuan & Simonato, Jean-Guy, 2002. "Maximum likelihood estimation of deposit insurance value with interest rate risk," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 109-132, January.
    16. Jan Ericsson, 2005. "Estimating Structural Bond Pricing Models," The Journal of Business, University of Chicago Press, vol. 78(2), pages 707-735, March.
    17. Lehar, Alfred, 2005. "Measuring systemic risk: A risk management approach," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2577-2603, October.
    18. Jin-Chuan Duan, 1994. "Maximum Likelihood Estimation Using Price Data Of The Derivative Contract," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 155-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:finlet:v:23:y:2017:i:c:p:306-313 is not listed on IDEAS
    2. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
    3. Michele Leonardo Bianchi, 2012. "An empirical comparison of alternative credit default swap pricing models," Temi di discussione (Economic working papers) 882, Bank of Italy, Economic Research and International Relations Area.
    4. Huang, Shirley J. & Yu, Jun, 2010. "Bayesian analysis of structural credit risk models with microstructure noises," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2259-2272, November.
    5. Forte, Santiago & Lovreta, Lidija, 2012. "Endogenizing exogenous default barrier models: The MM algorithm," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1639-1652.
    6. Xiao, Weilin & Zhang, Xili, 2016. "Pricing equity warrants with a promised lowest price in Merton’s jump–diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 219-238.
    7. Chung, Tsz-Kin & Hui, Cho-Hoi & Li, Ka-Fai, 2013. "Explaining share price disparity with parameter uncertainty: Evidence from Chinese A- and H-shares," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1073-1083.
    8. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    9. Benedikt Rotermann & Bernd Wilfling, 2015. "Estimating rational stock-market bubbles with sequential Monte Carlo methods," CQE Working Papers 4015, Center for Quantitative Economics (CQE), University of Muenster.
    10. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    11. Duan, Jin-Chuan, 2016. "Local-momentum autoregression and the modeling of interest rate term structure," Journal of Econometrics, Elsevier, vol. 194(2), pages 349-359.
    12. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    13. Flavia Barsotti & Simona Sanfelici, 2012. "Microstructure effect on firm’s volatility risk," Working Papers - Mathematical Economics 2012-05, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    14. Flavia Barsotti & Simona Sanfelici, 2016. "Market Microstructure Effects on Firm Default Risk Evaluation," Econometrics, MDPI, Open Access Journal, vol. 4(3), pages 1-31, July.
    15. Guarin, Alexander & Liu, Xiaoquan & Ng, Wing Lon, 2014. "Recovering default risk from CDS spreads with a nonlinear filter," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 87-104.
    16. Bu, Di & Liao, Yin, 2014. "Corporate credit risk prediction under stochastic volatility and jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 263-281.
    17. Boudreault, Mathieu & Gauthier, Geneviève & Thomassin, Tommy, 2015. "Estimation of correlations in portfolio credit risk models based on noisy security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 334-349.
    18. Di Bu & Yin Liao, 2013. "Structural Credit Risk Model with Stochastic Volatility: A Particle-filter Approach," NCER Working Paper Series 98, National Centre for Econometric Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:150:y:2009:i:2:p:288-296. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.