IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v65y2008i3p559-568.html
   My bibliography  Save this article

Bioeconomic modeling for control of weeds in natural environments

Author

Listed:
  • Cacho, Oscar J.
  • Wise, Russell M.
  • Hester, Susan M.
  • Sinden, J.A.

Abstract

When a weed invasion is first discovered a decision has to be made on whether to attempt to eradicate it, contain it or do nothing. Ideally, these decisions should be based on a complete benefit-cost analysis, but this is often not possible. A partial analysis, combining knowledge of the rate of spread, seedbank longevity, costs of control and techniques of economic analysis, can assist in making a good decision. This paper presents a decision model to determine when immediate eradication of a weed should be attempted, or more generally whether weed control should be attempted at all. The technique is based on identifying two 'switching points': the invasion size at which it is no longer optimal to attempt eradication but where containment may be an option; and the invasion size at which it becomes optimal to apply no form of control at all. The model is applied to a woody perennial weed in a natural environment. The results show that seedbank longevity is the main constraint on the maximum eradicable area and spread rate is the main constraint on the maximum containment area. Stochastic simulations are undertaken to derive probability distributions of costs which are than used to evaluate the effect of budget constraints on areas that can be eradicated. We find that, in the absence of a budget constraint, it may be desirable to eradicate invasions from areas as large as 8000Â ha, but when budget constraints typical of those faced by agencies in Australia are introduced, feasible eradicable areas are less than 1000Â ha.

Suggested Citation

  • Cacho, Oscar J. & Wise, Russell M. & Hester, Susan M. & Sinden, J.A., 2008. "Bioeconomic modeling for control of weeds in natural environments," Ecological Economics, Elsevier, vol. 65(3), pages 559-568, April.
  • Handle: RePEc:eee:ecolec:v:65:y:2008:i:3:p:559-568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00430-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odom, Doreen I. S. & Cacho, Oscar J. & Sinden, J. A. & Griffith, Garry R., 2003. "Policies for the management of weeds in natural ecosystems: the case of scotch broom (Cytisus scoparius, L.) in an Australian national park," Ecological Economics, Elsevier, vol. 44(1), pages 119-135, February.
    2. Sinden, John Alfred & Griffith, Garry, 2007. "Combining economic and ecological arguments to value the environmental gains from control of 35 weeds in Australia," Ecological Economics, Elsevier, vol. 61(2-3), pages 396-408, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rout, Tracy M. & Moore, Joslin L. & Possingham, Hugh P. & McCarthy, Michael A., 2011. "Allocating biosecurity resources between preventing, detecting, and eradicating island invasions," Ecological Economics, Elsevier, vol. 71(C), pages 54-62.
    2. Martínez, Yolanda & Cirujeda, Alicia & Gómez, Miguel I. & Marí, Ana I. & Pardo, Gabriel, 2018. "Bioeconomic model for optimal control of the invasive weed Zea mays subspp. (teosinte) in Spain," Agricultural Systems, Elsevier, vol. 165(C), pages 116-127.
    3. Liu, Shuang & Aurambout, Jean-Philippe & Villalta, Oscar & Edwards, Jacqueline & De Barro, Paul & Kriticos, Darren J. & Cook, David C., 2015. "A structured war-gaming framework for managing extreme risks," Ecological Economics, Elsevier, vol. 116(C), pages 369-377.
    4. Carrasco, Luis Roman & Baker, R & MacLeod, A & Knight, J. D. & Mumford, J. D., 2009. "Optimal and robust control of invasive alien species spreading in homogeneous landscapes," MPRA Paper 57757, University Library of Munich, Germany.
    5. Carrasco, L. Roman & Cook, David & Baker, Richard & MacLeod, Alan & Knight, Jon D. & Mumford, John D., 2012. "Towards the integration of spread and economic impacts of biological invasions in a landscape of learning and imitating agents," Ecological Economics, Elsevier, vol. 76(C), pages 95-103.
    6. Cacho, Oscar J. & Hester, Susan M., 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-18.
    7. Grechi, Isabelle & Chadès, Iadine & Buckley, Yvonne M. & Friedel, Margaret H. & Grice, Anthony C. & Possingham, Hugh P. & van Klinken, Rieks D. & Martin, Tara G., 2014. "A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species," Agricultural Systems, Elsevier, vol. 125(C), pages 1-11.
    8. Morteza Chalak & David J. Pannell, 2015. "Optimal Integrated Strategies to Control an Invasive Weed," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 63(3), pages 381-407, September.
    9. Carrasco, Luis Roman & MacLeod, Alan & Knight, John D. & Baker, Richard & Mumford, John D., 2009. "Optimal Control of Spreading Biological Invasions: For How Long Should We Apply the Brake?," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 50940, Agricultural Economics Society.
    10. Ferreira, João Miguel, 2023. "Optimal control policies for a non-eruptive population of rodents—The relevance of migration," Ecological Modelling, Elsevier, vol. 484(C).
    11. Cacho, Oscar J. & Hester, Susan M., 2022. "Modelling biocontrol of invasive insects: An application to European Wasp (Vespula germanica) in Australia," Ecological Modelling, Elsevier, vol. 467(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tumaneng-Diete, Tessie & Page, Ashley & Binney, Jim, 2005. "Assessing the economic values of exotic invasive plants on areas of conservation significance in Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 139287, Australian Agricultural and Resource Economics Society.
    2. Lehrer, David & Becker, Nir & Bar, Pua, 2010. "The economic impact of the invasion of Acacia saligna in Israel," MPRA Paper 33954, University Library of Munich, Germany.
    3. Morteza Chalak & Maksym Polyakov & David J. Pannell, 2017. "Economics of Controlling Invasive Species: A Stochastic Optimization Model for a Spatial-dynamic Process," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(1), pages 123-139.
    4. Oscar J. Cacho & Susan Hester & Daniel Spring, 2007. "Applying search theory to determine the feasibility of eradicating an invasive population in natural environments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 425-443, December.
    5. Gong, Wendy & Sinden, Jack A. & Jones, Randall E., 2008. "Valuing the benefits from preserving threatened native fauna and flora from invasive animal pests," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 5995, Australian Agricultural and Resource Economics Society.
    6. Trommetter, Michel, 2005. "Biodiversity and international stakes: A question of access," Ecological Economics, Elsevier, vol. 53(4), pages 573-583, June.
    7. Sinden, Jack A. & Downey, Paul O. & Hester, Susan M. & Cacho, Oscar J., 2008. "Valuing the biodiversity gains from protecting native plant communities from bitou bush (Chrysanthemoides monilifera subsp rotundata (DC.) T.Norl.) in New South Wales: application of the defensive exp," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 5988, Australian Agricultural and Resource Economics Society.
    8. Zull, Andrew F. & Cacho, Oscar J. & Lawes, Roger A., 2009. "Optimising woody-weed control," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47620, Australian Agricultural and Resource Economics Society.
    9. Odem, Doreen & Sinden, Jack A. & Cacho, Oscar J. & Griffith, Garry R., 2003. "Economic Issues in the Management of Plants Invading Natural Environments: Scotch Broom in Barrington Tops National Park," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 58193, Australian Agricultural and Resource Economics Society.
    10. Chalak, Morteza & Pannell, David J., 2012. "Optimal control of a stochastic biological invasion," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124373, Agricultural and Applied Economics Association.
    11. Martínez, Yolanda & Cirujeda, Alicia & Gómez, Miguel I. & Marí, Ana I. & Pardo, Gabriel, 2018. "Bioeconomic model for optimal control of the invasive weed Zea mays subspp. (teosinte) in Spain," Agricultural Systems, Elsevier, vol. 165(C), pages 116-127.
    12. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 35(1), pages 1-17, April.
    13. Carrasco, Luis Roman & MacLeod, Alan & Knight, John D. & Baker, Richard & Mumford, John D., 2009. "Optimal Control of Spreading Biological Invasions: For How Long Should We Apply the Brake?," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 50940, Agricultural Economics Society.
    14. Born, Wanda & Rauschmayer, Felix & Bräuer, Ingo, 2004. "Economic evaluation of biological invasions: A survey," UFZ Discussion Papers 7/2004, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    15. Chalak-Haghighi, Morteza & Ruijs, Arjan & van Ierland, Ekko C., 2009. "Biological control of invasive plant species: stochastic economic analysis," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48153, Australian Agricultural and Resource Economics Society.
    16. Cokou Patrice Kpadé & Edouard Roméo Mensah & Michel Fok & Jupiter Ndjeunga, 2017. "Cotton farmers’ willingness to pay for pest management services in northern Benin," Agricultural Economics, International Association of Agricultural Economists, vol. 48(1), pages 105-114, January.
    17. Chalak-Haghighi, Morteza & Pannell, David J., 2010. "Economics of controlling a spreading environmental weed," 2010 Conference (54th), February 10-12, 2010, Adelaide, Australia 58886, Australian Agricultural and Resource Economics Society.
    18. Woongchan Jeon & Kwansoo Kim, 2017. "Optimal Weed Control Strategies in Rice Production under Dynamic and Static Decision Rules in South Korea," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
    19. Chalak, Morteza & Pannell, David J., 2012. "Optimising control of an agricultural weed in sheep-production pastures," Agricultural Systems, Elsevier, vol. 109(C), pages 1-8.
    20. Born, Wanda & Rauschmayer, Felix & Brauer, Ingo, 2005. "Economic evaluation of biological invasions--a survey," Ecological Economics, Elsevier, vol. 55(3), pages 321-336, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:65:y:2008:i:3:p:559-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.