IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v188y2021ics0921800921001622.html
   My bibliography  Save this article

Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan

Author

Listed:
  • Kito, Minami

Abstract

Airline industry CO2 emissions have increased rapidly; air transportation released approximately 2.8% of global fuel-combustion-based CO2 emissions in 2019. Focusing on Japan, this study explored the introduction of new passenger aircraft as a CO2-reduction policy. To this end, the lifetime distribution function for passenger aircraft was specified. Lifecycle CO2 emissions and the associated costs between 1965 and 2019 were then estimated. The results showed that single-aisle aircraft followed a Rayleigh distribution with a mean of 13.42, while twin-aisle aircraft followed a normal distribution with a mean of 19.82. The reduction potential of lifecycle CO2 emissions is 28.2 Mt. over 55 years by extending the lifetime +11 years of single-aisle aircraft and shortening the lifetime −8 years of twin-aisle aircraft. If the average fuel intensity of aircraft inflow improves steadily, the shortened lifetime and introduction of more fuel-efficient aircraft contribute to a decrease in lifecycle CO2 emissions. However, the cost associated with the lifecycle CO2 emission reductions is USD 94.0 billion, and airlines need to pay USD 3.4 thousand to reduce CO2 emissions by one unit. In sum, the introduction of new aircraft was shown to be cost-ineffective as a CO2-reduction policy, and airlines need to switch to less costly alternatives.

Suggested Citation

  • Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:ecolec:v:188:y:2021:i:c:s0921800921001622
    DOI: 10.1016/j.ecolecon.2021.107104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800921001622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2021.107104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    2. Rosskopf, Michael & Lehner, Stephan & Gollnick, Volker, 2014. "Economic–environmental trade-offs in long-term airline fleet planning," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 109-115.
    3. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    4. Andreas W. Schäfer & Antony D. Evans & Tom G. Reynolds & Lynnette Dray, 2016. "Costs of mitigating CO2 emissions from passenger aircraft," Nature Climate Change, Nature, vol. 6(4), pages 412-417, April.
    5. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    6. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    7. Csereklyei, Zsuzsanna & Stern, David I., 2020. "Flying More Efficiently: Joint Impacts of Fuel Prices, Capital Costs and Fleet Size on Airline Fleet Fuel Economy," Ecological Economics, Elsevier, vol. 175(C).
    8. Masahiro Oguchi & Shinsuke Murakami & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part II," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 613-626, August.
    9. Shinsuke Murakami & Masahiro Oguchi & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part I," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 598-612, August.
    10. Macintosh, Andrew & Wallace, Lailey, 2009. "International aviation emissions to 2025: Can emissions be stabilised without restricting demand?," Energy Policy, Elsevier, vol. 37(1), pages 264-273, January.
    11. Dray, Lynnette, 2013. "An analysis of the impact of aircraft lifecycles on aviation emissions mitigation policies," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 62-69.
    12. Islam, Towhidul & Meade, Nigel, 2000. "Modelling diffusion and replacement," European Journal of Operational Research, Elsevier, vol. 125(3), pages 551-570, September.
    13. Teodora Diana Corsatea & Soeren Lindner & Inaki Arto & Maria Victoria Roman & Jose Manuel Rueda-Cantuche & Agustin Velezquez Afonso & Antonio F. Amores & Frederik Neuwahl, 2019. "World Input-Output Database Environmental Accounts," JRC Research Reports JRC116234, Joint Research Centre.
    14. Yu, Jinglei & Shao, Chaofeng & Xue, Chenyang & Hu, Huaqing, 2020. "China's aircraft-related CO2 emissions: Decomposition analysis, decoupling status, and future trends," Energy Policy, Elsevier, vol. 138(C).
    15. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuya Nakamoto & Shigemi Kagawa, 2022. "A generalized framework for analyzing car lifetime effects on stock, flow, and carbon footprint," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 433-447, April.
    2. Minami Kito & Hirotaka Takayabu & Keisuke Nansai, 2023. "Carbon‐neutral pathways to 2050 for Japan's aviation industry in the absence of a mass supply of sustainable aviation fuels," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1579-1592, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuanyu Yue & Julie Byrne, 2021. "Linking the Determinants of Air Passenger Flows and Aviation Related Carbon Emissions: A European Study," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    2. Xiurui Guo & Chunxiao Ning & Yaqian Shen & Chang Yao & Dongsheng Chen & Shuiyuan Cheng, 2023. "Projection of the Co-Reduced Emissions of CO 2 and Air Pollutants from Civil Aviation in China," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    3. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    4. Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
    5. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    6. Kalmykova, Yuliya & Berg, Per E.-O. & Patrício, João & Lisovskaja, Vera, 2017. "Portable battery lifespans and new estimation method for battery collection rate based on a lifespan modeling approach," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 65-74.
    7. Ingun Grimstad Klepp & Kirsi Laitala & Stephen Wiedemann, 2020. "Clothing Lifespans: What Should Be Measured and How," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    8. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.
    9. Shinsuke Murakami & Haruhisa Yamamoto & Terufumi Toyota, 2021. "Potential Impact of Consumer Intention on Generation of Waste Photovoltaic Panels: A Case Study for Tokyo," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
    10. Marta Royo & Vicente Chulvi & Elena Mulet & Laura Ruiz‐Pastor, 2023. "Analysis of parameters about useful life extension in 70 tools and methods related to eco‐design and circular economy," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 562-586, April.
    11. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    12. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    13. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    14. Dirk Lauinger & Romain G. Billy & Felipe Vásquez & Daniel B. Müller, 2021. "A general framework for stock dynamics of populations and built and natural environments," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1136-1146, October.
    15. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
    16. Tulga Mendjargal & Eiji Yamasue & Hiroki Tanikawa, 2022. "Estimation of the Lifespan of Imported Passenger Vehicles in Mongolia," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    17. Hu, Liangdong & Ma, Longlong & Hu, Guangzhi & Zhang, Wenjie & Liu, Ying & Xu, Rui & Ge, Wen & Chen, Yubao, 2022. "Utilization of illumination and thermal field in the preparation of jet–fuel components: The photothermic catalysis of Jatropha oil over the M/TiO2–HZSM–5," Energy, Elsevier, vol. 239(PC).
    18. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    19. Parajuly, Keshav & Habib, Komal & Liu, Gang, 2017. "Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 85-92.
    20. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:188:y:2021:i:c:s0921800921001622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.