IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i6p1579-1592.html
   My bibliography  Save this article

Carbon‐neutral pathways to 2050 for Japan's aviation industry in the absence of a mass supply of sustainable aviation fuels

Author

Listed:
  • Minami Kito
  • Hirotaka Takayabu
  • Keisuke Nansai

Abstract

The global aviation sector must reduce its carbon dioxide (CO2) emissions to achieve its 2050 net‐zero emissions target. Although the current pathway to the target considers an increase in aviation demand following the COVID‐19 pandemic, emissions can be offset by the introduction of future technologies such as electric and hydrogen aircraft and sustainable aviation fuels (SAF). However, the commercialization of these future technologies is uncertain. In this study, we explore the feasible pathways for achieving the 2050 target in Japan. Specifically, we compare non‐future technology pathways, such as improving fuel efficiency and controlling flight distance and aircraft lifespan, with future technology pathways, such as introducing SAF. The results showed that the non‐future technology pathway would require up to 27% suppression of cumulative flight distances by 2050 relative to the predicted flight distance if only improving fuel efficiency and controlling flight distance and aircraft lifetimes. Minimizing the cumulative cost of the target achievement is contingent upon maximizing fuel efficiency and aircraft life extension. Additionally, the target achievement requires switching domestic flights to railway transport and limiting international flights for leisure, as well as increasing fares by up to 48% to compensate for sale declines. If future technologies are not fully implemented, substantial social change will be required to achieve the target.

Suggested Citation

  • Minami Kito & Hirotaka Takayabu & Keisuke Nansai, 2023. "Carbon‐neutral pathways to 2050 for Japan's aviation industry in the absence of a mass supply of sustainable aviation fuels," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1579-1592, December.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:6:p:1579-1592
    DOI: 10.1111/jiec.13443
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13443
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gössling, Stefan & Hanna, Paul & Higham, James & Cohen, Scott & Hopkins, Debbie, 2019. "Can we fly less? Evaluating the ‘necessity’ of air travel," Journal of Air Transport Management, Elsevier, vol. 81(C).
    2. Macintosh, Andrew & Wallace, Lailey, 2009. "International aviation emissions to 2025: Can emissions be stabilised without restricting demand?," Energy Policy, Elsevier, vol. 37(1), pages 264-273, January.
    3. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    4. Andreas W. Schäfer & Steven R. H. Barrett & Khan Doyme & Lynnette M. Dray & Albert R. Gnadt & Rod Self & Aidan O’Sullivan & Athanasios P. Synodinos & Antonio J. Torija, 2019. "Technological, economic and environmental prospects of all-electric aircraft," Nature Energy, Nature, vol. 4(2), pages 160-166, February.
    5. Yin, Kwong-sang & Dargusch, Paul & Halog, Anthony, 2015. "An analysis of the greenhouse gas emissions profile of airlines flying the Australian international market," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 218-229.
    6. Milan Klöwer & Debbie Hopkins & Myles Allen & James Higham, 2020. "An analysis of ways to decarbonize conference travel after COVID-19," Nature, Nature, vol. 583(7816), pages 356-359, July.
    7. Romain Sacchi & Viola Becattini & Paolo Gabrielli & Brian Cox & Alois Dirnaichner & Christian Bauer & Marco Mazzotti, 2023. "How to make climate-neutral aviation fly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    9. Nicoletta Brazzola & Anthony Patt & Jan Wohland, 2022. "Definitions and implications of climate-neutral aviation," Nature Climate Change, Nature, vol. 12(8), pages 761-767, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobruszkes, Frédéric & Mattioli, Giulio & Mathieu, Laurette, 2022. "Banning super short-haul flights: Environmental evidence or political turbulence?," Journal of Transport Geography, Elsevier, vol. 104(C).
    2. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    3. Soria Baledón, Mónica & Kosoy, Nicolás, 2018. "“Problematizing†carbon emissions from international aviation and the role of alternative jet fuels in meeting ICAO's mid-century aspirational goals," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 130-137.
    4. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    5. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Anita Prapotnik Brdnik & Rok Kamnik & Maršenka Marksel & Stanislav Božičnik, 2019. "Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft," Energies, MDPI, vol. 12(10), pages 1-14, May.
    7. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    8. Kristian S. Nielsen & Kimberly A. Nicholas & Felix Creutzig & Thomas Dietz & Paul C. Stern, 2021. "The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions," Nature Energy, Nature, vol. 6(11), pages 1011-1016, November.
    9. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    10. Doran, Rouven & Pallesen, Ståle & Böhm, Gisela & Ogunbode, Charles A., 2022. "When and why do people experience flight shame?," Annals of Tourism Research, Elsevier, vol. 92(C).
    11. Martin Thomas Falk & Eva Hagsten, 2023. "Reverse adoption of information and communication technology among organisers of academic conferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1963-1985, March.
    12. Laura DIACONU (MAXIM), 2021. "The behaviour of airlines’ passengers in the context of COVID-19 pandemic," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13(2), pages 230-242, July.
    13. Antonio Cavallin Toscani & Atalay Atasu & Luk N. Van Wassenhove & Andrea Vinelli, 2023. "Life cycle assessment of in‐person, virtual, and hybrid academic conferences: New evidence and perspectives," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1461-1475, December.
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. repec:dau:papers:123456789/9263 is not listed on IDEAS
    16. Kranz, Johann & Zeiss, Roman & Beck, Roman & Gholami, Roya & Sarker, Saonee & Watson, Richard T. & Whitley, Edgar A., 2022. "Practicing what we preach? Reflections on more sustainable and responsible IS research and teaching practices," LSE Research Online Documents on Economics 116677, London School of Economics and Political Science, LSE Library.
    17. Alexander Barke & Walter Cistjakov & Dominik Steckermeier & Christian Thies & Jan‐Linus Popien & Peter Michalowski & Sofia Pinheiro Melo & Felipe Cerdas & Christoph Herrmann & Ulrike Krewer & Arno Kwa, 2023. "Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 795-810, June.
    18. Piotr Niedzielski & Magdalena Zioło & Jarosław Kozuba & Ewa Kuzionko-Ochrymiuk & Natalia Drop, 2021. "Analysis of the Relationship of the Degree of Aviation Sector Development with Greenhouse Gas Emissions and Measures of Economic Development in the European Union Countries," Energies, MDPI, vol. 14(13), pages 1-16, June.
    19. Chèze, Benoît & Gastineau, Pascal & Chevallier, Julien, 2011. "Forecasting world and regional aviation jet fuel demands to the mid-term (2025)," Energy Policy, Elsevier, vol. 39(9), pages 5147-5158, September.
    20. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    21. Michelmann, Johannes & Schmalz, Ulrike & Becker, Axel & Stroh, Florian & Behnke, Sebastian & Hornung, Mirko, 2023. "Influence of COVID-19 on air travel - A scenario study toward future trusted aviation," Journal of Air Transport Management, Elsevier, vol. 106(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:6:p:1579-1592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.