IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016378.html
   My bibliography  Save this article

Pathways analysis for hydrogen energy to mitigate climate change in African air traffic

Author

Listed:
  • Jia, Zi-ke
  • Cui, Qiang

Abstract

Africa's aviation industry is experiencing rapid growth, and as an underdeveloped region, it has the potential to make significant contributions to the global aviation industry's sustainable development. This paper examines the role of hydrogen energy in controlling climate change in the African air traffic through various scenarios using the Aviation Finite-Amplitude Impulse Response (Aviation-FAIR) method. The findings reveal that while emissions and concentrations of other pollutants, such as N2O and CH4, are relatively small compared to CO2, their Effective Radiative Forcing (ERF) is higher, making their impact on climate change significant. The use of hydrogen energy can significantly reduce the aviation industry's climate impact in Africa; however, the timing of implementation is critical. Therefore, using Sustainable Aviation Fuels (SAFs) as a transitional energy source before adopting hydrogen energy is a better option for the African air traffic.

Suggested Citation

  • Jia, Zi-ke & Cui, Qiang, 2025. "Pathways analysis for hydrogen energy to mitigate climate change in African air traffic," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016378
    DOI: 10.1016/j.energy.2025.135995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Debbage, Keith G. & Debbage, Neil, 2019. "Aviation carbon emissions, route choice and tourist destinations: Are non-stop routes a remedy?," Annals of Tourism Research, Elsevier, vol. 79(C).
    2. Agnieszka Skowron & David S. Lee & Rubén Rodríguez León & Ling L. Lim & Bethan Owen, 2021. "Greater fuel efficiency is potentially preferable to reducing NOx emissions for aviation’s climate impacts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Dahal, Karna & Brynolf, Selma & Xisto, Carlos & Hansson, Julia & Grahn, Maria & Grönstedt, Tomas & Lehtveer, Mariliis, 2021. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Eduardo Cabrera & João M. Melo de Sousa, 2022. "Use of Sustainable Fuels in Aviation—A Review," Energies, MDPI, vol. 15(7), pages 1-23, March.
    5. Ng, Kok Siew & Farooq, Danial & Yang, Aidong, 2021. "Global biorenewable development strategies for sustainable aviation fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Winchester, Niven, 2019. "A win-win solution to abate aviation CO2 emissions," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    7. Tokuslu, Aydin, 2020. "Estimation of aircraft emissions at Georgian international airport," Energy, Elsevier, vol. 206(C).
    8. Peter Chesson, 2017. "AEDT: A new concept for ecological dynamics in the ever-changing world," PLOS Biology, Public Library of Science, vol. 15(5), pages 1-13, May.
    9. González, Rodrigo & Hosoda, Eiji B., 2016. "Environmental impact of aircraft emissions and aviation fuel tax in Japan," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 234-240.
    10. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    11. Lynnette Dray & Andreas W. Schäfer & Carla Grobler & Christoph Falter & Florian Allroggen & Marc E. J. Stettler & Steven R. H. Barrett, 2022. "Cost and emissions pathways towards net-zero climate impacts in aviation," Nature Climate Change, Nature, vol. 12(10), pages 956-962, October.
    12. Volker Grewe & Arvind Gangoli Rao & Tomas Grönstedt & Carlos Xisto & Florian Linke & Joris Melkert & Jan Middel & Barbara Ohlenforst & Simon Blakey & Simon Christie & Sigrun Matthes & Katrin Dahlmann, 2021. "Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Nicoletta Brazzola & Anthony Patt & Jan Wohland, 2022. "Definitions and implications of climate-neutral aviation," Nature Climate Change, Nature, vol. 12(8), pages 761-767, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bardon, Paul & Massol, Olivier, 2025. "Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    2. Chen, Ruotian & Yang, Hangjun & Wang, Kun & Jiang, Changmin, 2024. "Impacts of a sustainable aviation fuel mandate on airline competition — Full-service carrier vs. low-cost carrier," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
    3. Paul Bardon & Olivier Massol & Arthur Thomas, 2025. "Greening aviation with sustainable aviation fuels : Insights from decarbonization scenarios," Post-Print hal-04874217, HAL.
    4. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    5. Gössling, Stefan & Humpe, Andreas, 2023. "Net-zero aviation: Time for a new business model?," Journal of Air Transport Management, Elsevier, vol. 107(C).
    6. Xu, Yuchao & Zhang, Yahua & Deng, Xin & Lee, Seung-Yong & Wang, Kun & Li, Linbo, 2025. "Bibliometric analysis and literature review on sustainable aviation fuel (SAF): Economic and management perspective," Transport Policy, Elsevier, vol. 162(C), pages 296-312.
    7. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Prussi, M. & Noussan, M. & Laveneziana, L. & Chiaramonti, D., 2025. "The risk of increasing energy demand while pursuing decarbonisation: the case of the e-fuels for the EU aviation sector," Transport Policy, Elsevier, vol. 160(C), pages 154-158.
    9. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    10. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    11. Zheng, Shiyuan & Wang, Chunan & Jiang, Changmin, 2024. "Carrot or stick? Environmental and welfare implications of sustainable aviation fuel policies," Transportation Research Part B: Methodological, Elsevier, vol. 188(C).
    12. Nicoletta Brazzola & Amir Meskaldji & Anthony Patt & Tim Tröndle & Christian Moretti, 2025. "The role of direct air capture in achieving climate-neutral aviation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    13. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    14. Shadbahr, Jalil & Peeples, Craig A. & Pahija, Ergys & Panaritis, Christopher & Boffito, Daria Camilla & Patience, Gregory & Bensebaa, Farid, 2025. "Sustainability assessment of catalyst design on CO2-derived fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    15. Li, Fangyi & Li, Fei & Cai, Bofeng & Lyu, Chen & Xie, Wu, 2024. "Role of Chinese cities in abating aviation carbon emissions based on gridded population data and power law model," Energy, Elsevier, vol. 288(C).
    16. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    17. Minami Kito & Hirotaka Takayabu & Keisuke Nansai, 2023. "Carbon‐neutral pathways to 2050 for Japan's aviation industry in the absence of a mass supply of sustainable aviation fuels," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1579-1592, December.
    18. Xue, Dabin & Du, Sen & Wang, Bing & Shang, Wen-Long & Avogadro, Nicolò & Ochieng, Washington Yotto, 2025. "Low-carbon benefits of aircraft adopting continuous descent operations," Applied Energy, Elsevier, vol. 383(C).
    19. Emmanouilidou, Elissavet & Mitkidou, Sophia & Agapiou, Agapios & Kokkinos, Nikolaos C., 2023. "Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review," Renewable Energy, Elsevier, vol. 206(C), pages 897-907.
    20. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.