IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008011.html
   My bibliography  Save this article

Fuel savings strategies for sustainable aviation in accordance with United Nations Sustainable Development Goals (UN SDGs)

Author

Listed:
  • Inan, Ilker
  • Orhan, Ilkay
  • Ekici, Selcuk

Abstract

This study presents fuel savings enhancements through practical, data-driven approaches in ground operations, emphasizing the contribution to sustainable aviation in alignment with Sustainable Development Goals 13 on Climate Action. The proposed strategies, supported by actual figures, are practical and easily integrated into standard pre-flight procedures for airlines. Fuel savings are highlighted through weight and load optimization without requiring additional costs. The study examines the challenges in achieving the optimal center of gravity range based on various loading configurations, such as forward-heavy, balanced, and aft-heavy. Additionally, the impact of shifting loads on Mean Aerodynamic Chord values, stabilizer trim, and nose-up angles is discussed to improve operational efficiency. Further analysis explores the tare weights reduction of Unit Load Devices through alternatives to achieve accurate Zero Fuel Weight calculations and discusses the significance of flight plan revisions following Last Minute Changes scenarios. Pantry code variations and potable water ratios are evaluated in relation to the number of passengers, flight duration, and tank capacities to optimize fuel consumption. The exclusion of non-essential deadload items, such as spare tires and wheels, is evaluated as a strategy to improve Zero Fuel Weight efficiency. The findings provide practical insights for aviation policymakers and international authorities, contributing to the reduction of greenhouse gas emissions and supporting global climate action goals.

Suggested Citation

  • Inan, Ilker & Orhan, Ilkay & Ekici, Selcuk, 2025. "Fuel savings strategies for sustainable aviation in accordance with United Nations Sustainable Development Goals (UN SDGs)," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008011
    DOI: 10.1016/j.energy.2025.135159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2018. "Managing Fuel Efficiency in the Aviation Sector: Challenges, Accomplishments and Opportunities," FIIB Business Review, , vol. 7(4), pages 244-251, December.
    2. Csereklyei, Zsuzsanna & Stern, David I., 2020. "Flying More Efficiently: Joint Impacts of Fuel Prices, Capital Costs and Fleet Size on Airline Fleet Fuel Economy," Ecological Economics, Elsevier, vol. 175(C).
    3. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    4. Matthew E. Berge & Craig A. Hopperstad, 1993. "Demand Driven Dispatch: A Method for Dynamic Aircraft Capacity Assignment, Models and Algorithms," Operations Research, INFORMS, vol. 41(1), pages 153-168, February.
    5. Hanwen Guo & Haiyun Xu & Jianguo Liu & Xiaoqin Nie & Xu Li & Tianchu Shu & Binjie Bai & Xingyu Ma & Yuan Yao, 2022. "Greenhouse Gas Emissions in the Process of Landfill Disposal in China," Energies, MDPI, vol. 15(18), pages 1-10, September.
    6. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    7. Greer K. Gosnell & John A. List & Robert D. Metcalfe, 2020. "The Impact of Management Practices on Employee Productivity: A Field Experiment with Airline Captains," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1195-1233.
    8. Huang, Chenyu & Cheng, Xiaoyue, 2022. "Estimation of aircraft fuel consumption by modeling flight data from avionics systems," Journal of Air Transport Management, Elsevier, vol. 99(C).
    9. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    10. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    11. Nin-Pratt, Alejandro & Beveridge, Malcolm C. M. & Sulser, Timothy B. & Marwaha, Nisha & Stanley, Michele & Grisenthwaite, Robert & Phillips, Michael J., 2022. "Cattle, seaweed, and global greenhouse gas emissions," IFPRI discussion papers 2111, International Food Policy Research Institute (IFPRI).
    12. Tsai, Wen-Hsien & Chang, Yao-Chung & Lin, Sin-Jin & Chen, Hui-Chiao & Chu, Po-Yuan, 2014. "A green approach to the weight reduction of aircraft cabins," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 65-77.
    13. Postorino, Maria Nadia & Mantecchini, Luca & Paganelli, Filippo, 2019. "Improving taxi-out operations at city airports to reduce CO2 emissions," Transport Policy, Elsevier, vol. 80(C), pages 167-176.
    14. Babikian, Raffi & Lukachko, Stephen P. & Waitz, Ian A., 2002. "The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 389-400.
    15. Tsai, Wen-Hsien & Lee, Kuen-Chang & Liu, Jau-Yang & Lin, Hsiu-Ling & Chou, Yu-Wei & Lin, Sin-Jin, 2012. "A mixed activity-based costing decision model for green airline fleet planning under the constraints of the European Union Emissions Trading Scheme," Energy, Elsevier, vol. 39(1), pages 218-226.
    16. Yu, Jinglei & Shao, Chaofeng & Xue, Chenyang & Hu, Huaqing, 2020. "China's aircraft-related CO2 emissions: Decomposition analysis, decoupling status, and future trends," Energy Policy, Elsevier, vol. 138(C).
    17. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2018. "Managing Fuel Efficiency in the Aviation Sector: Challenges, Accomplishments and Opportunities," FIIB Business Review, , vol. 7(4), pages 244-251, December.
    2. Adeline Montlaur & Luis Delgado & César Trapote-Barreira, 2021. "Analytical Models for CO 2 Emissions and Travel Time for Short-to-Medium-Haul Flights Considering Available Seats," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    3. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    4. Wandelt, Sebastian & Signori, Andrea & Chang, Shuming & Wang, Shuang & Du, Zhuoming & Sun, Xiaoqian, 2025. "Unleashing the potential of operations research in air transport: A review of applications, methods, and challenges," Journal of Air Transport Management, Elsevier, vol. 124(C).
    5. Chow, Clement Kong Wing & Tsui, Wai Hong Kan, 2017. "Organizational learning, operating costs and airline consolidation policy in the Chinese airline industry," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 108-118.
    6. Valeriy V. Iosifov & Pavel D. Ratner, 2021. "Climate Policies of G20 and New Threats for Russian Energy and Transportation Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 478-486.
    7. Jagroop Singh & Somesh Kumar Sharma & Rajnish Srivastava, 2019. "AHP-Entropy based priority assessment of factors to reduce aviation fuel consumption," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 212-227, April.
    8. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    9. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    10. Hamdan, Sadeque & Jouini, Oualid & Cheaitou, Ali & Jemai, Zied & Granberg, Tobias Andersson & Josefsson, Billy, 2022. "Air traffic flow management under emission policies: Analyzing the impact of sustainable aviation fuel and different carbon prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 14-40.
    11. Park, Yongha & O'Kelly, Morton E., 2018. "Examination of cost-efficient aircraft fleets using empirical operation data in US aviation markets," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 224-234.
    12. Dobruszkes, Frédéric & Mattioli, Giulio & Mathieu, Laurette, 2022. "Banning super short-haul flights: Environmental evidence or political turbulence?," Journal of Transport Geography, Elsevier, vol. 104(C).
    13. Brueckner, Jan K. & Abreu, Chrystyane, 2020. "Does the fuel-conservation effect of higher fuel prices appear at both the aircraft-model and aggregate airline levels?," Economics Letters, Elsevier, vol. 197(C).
    14. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    15. Xiurui Guo & Chunxiao Ning & Yaqian Shen & Chang Yao & Dongsheng Chen & Shuiyuan Cheng, 2023. "Projection of the Co-Reduced Emissions of CO 2 and Air Pollutants from Civil Aviation in China," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    16. Wen-Hsien Tsai & Shang-Yu Lai & Chu-Lun Hsieh, 2023. "Exploring the impact of different carbon emission cost models on corporate profitability," Annals of Operations Research, Springer, vol. 322(1), pages 41-74, March.
    17. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    18. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    19. Raffaella Sadun & Rachel J. Schuh & Jonathan S. Hartley & John Van Reenen & Nicholas Bloom, 2025. "Management and Firm Dynamism," NBER Working Papers 33765, National Bureau of Economic Research, Inc.
    20. Kathrin Manthei & Dirk Sliwka & Timo Vogelsang, 2021. "Performance Pay and Prior Learning—Evidence from a Retail Chain," Management Science, INFORMS, vol. 67(11), pages 6998-7022, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.