IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14582-d964715.html
   My bibliography  Save this article

Estimation of the Lifespan of Imported Passenger Vehicles in Mongolia

Author

Listed:
  • Tulga Mendjargal

    (Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Aichi, Japan)

  • Eiji Yamasue

    (College of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan)

  • Hiroki Tanikawa

    (Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Aichi, Japan)

Abstract

In the last few decades, there has been an increase in second-hand imported vehicles in developing countries, including Mongolia. However, the extension of vehicle lifespans abroad promotes circular economy activities. In this study, we investigated the lifespan of second-hand imported passenger vehicles and their implication for the future sustainability of the transportation sector in Mongolia. The methodology used in this study comprised three stages. First, we conducted surveys to investigate the trends in second-hand vehicles in Mongolia. Next, the results from the survey on passenger vehicles were classified into three major categories based on their mode of operation, namely fuel, liquefied gas petroleum (gas), and the hybrid engine vehicle (HV) (of which the Toyota Prius is the most used vehicle in Mongolia). Finally, we estimated the average lifespan of vehicles using the Weibull distribution to measure before and after the import. The results show that the total average lifespans of all vehicles range between 17.3 and 20.2 years, respectively. The results highlight the different shape parameters of each vehicle category (fuel, gas, and HV), providing a better understanding of each vehicle’s lifespan and providing insights on the future management of second-hand imported vehicles, lifecycles, and recycling potentials for the successful development of sustainable transport policies in Mongolia.

Suggested Citation

  • Tulga Mendjargal & Eiji Yamasue & Hiroki Tanikawa, 2022. "Estimation of the Lifespan of Imported Passenger Vehicles in Mongolia," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14582-:d:964715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Lingyu & Wang, Anjian & Chen, Qishen & Li, Jianwu, 2013. "Dynamic material flow analysis of zinc resources in China," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 23-31.
    2. Masahiro Oguchi & Shinsuke Murakami & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part II," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 613-626, August.
    3. Shinsuke Murakami & Masahiro Oguchi & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part I," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 598-612, August.
    4. Kagawa, Shigemi & Tasaki, Tomohiro & Moriguchi, Yuichi, 2006. "The environmental and economic consequences of product lifetime extension: Empirical analysis for automobile use," Ecological Economics, Elsevier, vol. 58(1), pages 108-118, June.
    5. Sotiris P. Gayialis & Evripidis P. Kechagias & Georgios A. Papadopoulos & Dimitrios Masouras, 2022. "A Review and Classification Framework of Traceability Approaches for Identifying Product Supply Chain Counterfeiting," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    6. Yuya Nakamoto, 2017. "CO2 reduction potentials through the market expansion and lifetime extension of used cars," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-14, December.
    7. Yang Li & Kiyoshi Fujikawa & Junbo Wang & Xin Li & Yiyi Ju & Chenyi Chen, 2020. "The Potential and Trend of End-Of-Life Passenger Vehicles Recycling in China," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    2. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
    3. Yuya Nakamoto, 2017. "CO2 reduction potentials through the market expansion and lifetime extension of used cars," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-14, December.
    4. Yuya Nakamoto & Shigemi Kagawa, 2022. "A generalized framework for analyzing car lifetime effects on stock, flow, and carbon footprint," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 433-447, April.
    5. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    6. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    7. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    8. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Kalmykova, Yuliya & Berg, Per E.-O. & Patrício, João & Lisovskaja, Vera, 2017. "Portable battery lifespans and new estimation method for battery collection rate based on a lifespan modeling approach," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 65-74.
    10. Dirk Lauinger & Romain G. Billy & Felipe Vásquez & Daniel B. Müller, 2021. "A general framework for stock dynamics of populations and built and natural environments," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1136-1146, October.
    11. Yang Li & Shiyu Huang & Yanhui Liu & Yiyi Ju, 2021. "Recycling Potential of Plastic Resources from End-of-Life Passenger Vehicles in China," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    12. Ingun Grimstad Klepp & Kirsi Laitala & Stephen Wiedemann, 2020. "Clothing Lifespans: What Should Be Measured and How," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    13. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.
    14. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    15. Parajuly, Keshav & Habib, Komal & Liu, Gang, 2017. "Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 85-92.
    16. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    17. Shinsuke Murakami & Haruhisa Yamamoto & Terufumi Toyota, 2021. "Potential Impact of Consumer Intention on Generation of Waste Photovoltaic Panels: A Case Study for Tokyo," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
    18. Marta Royo & Vicente Chulvi & Elena Mulet & Laura Ruiz‐Pastor, 2023. "Analysis of parameters about useful life extension in 70 tools and methods related to eco‐design and circular economy," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 562-586, April.
    19. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    20. Sotiris P. Gayialis & Evripidis P. Kechagias & Georgios A. Papadopoulos & Nikolaos A. Panayiotou, 2022. "A Business Process Reference Model for the Development of a Wine Traceability System," Sustainability, MDPI, vol. 14(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14582-:d:964715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.