IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v68y2023ics1062940823000852.html
   My bibliography  Save this article

Which liquidity indicator is more informative to market volatility? Spectrum analysis of China’s base metal futures market

Author

Listed:
  • Chen, Xiangyu
  • Tongurai, Jittima

Abstract

By applying the frequency domain causality test and cross-spectral coherence analysis, this study investigates the informational effects of liquidity indicators on the volatility of China’s base metal futures market from January 2016 to June 2022. We find that trading volume is more informative in economically explaining the price variations of most base metal futures for all frequency horizons, while open interest is more informative to Granger-cause economic innovations in the market volatility of the lead and nickel futures markets both in the short and long run. The coherence levels between the underlying frequency components for open interest are found to be greater than those for trading volume, suggesting that price volatility in China’s base metal futures market would be more responsive to shocks in open interest.

Suggested Citation

  • Chen, Xiangyu & Tongurai, Jittima, 2023. "Which liquidity indicator is more informative to market volatility? Spectrum analysis of China’s base metal futures market," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000852
    DOI: 10.1016/j.najef.2023.101962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823000852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karkowska, Renata & Palczewski, Andrzej, 2023. "Does high-frequency trading actually improve market liquidity? A comparative study for selected models and measures," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Hou, Yang & Li, Steven & Wen, Fenghua, 2019. "Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach," Energy Economics, Elsevier, vol. 83(C), pages 119-143.
    3. Fernando, Chitru S. & Krishnamurthy, Srinivasan & Spindt, Paul A., 2004. "Are share price levels informative? Evidence from the ownership, pricing, turnover and performance of IPO firms," Journal of Financial Markets, Elsevier, vol. 7(4), pages 377-403, October.
    4. Ye, Wuyi & Guo, Ranran & Jiang, Ying & Liu, Xiaoquan & Deschamps, Bruno, 2019. "Professional macroeconomic forecasts and Chinese commodity futures prices," Finance Research Letters, Elsevier, vol. 28(C), pages 130-136.
    5. Ripple, Ronald D. & Moosa, Imad A., 2009. "The effect of maturity, trading volume, and open interest on crude oil futures price range-based volatility," Global Finance Journal, Elsevier, vol. 20(3), pages 209-219.
    6. M. F. Omran & E. McKenzie, 2000. "Heteroscedasticity in stock returns data revisited: volume versus GARCH effects," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 553-560.
    7. Darrat, Ali F. & Rahman, Shafiqur & Zhong, Maosen, 2003. "Intraday trading volume and return volatility of the DJIA stocks: A note," Journal of Banking & Finance, Elsevier, vol. 27(10), pages 2035-2043, October.
    8. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    9. Toshiaki Watanabe, 2001. "Price volatility, trading volume, and market depth: evidence from the Japanese stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 11(6), pages 651-658.
    10. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Kumar, Satish, 2016. "Evidence of information transmission across currency futures markets using frequency domain tests," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 319-327.
    12. Guo, Jin, 2018. "Co-movement of international copper prices, China's economic activity, and stock returns: Structural breaks and volatility dynamics," Global Finance Journal, Elsevier, vol. 36(C), pages 62-77.
    13. Wei, Yanfeng & Guo, Xiaoying, 2016. "An empirical analysis of the relationship between oil prices and the Chinese macro-economy," Energy Economics, Elsevier, vol. 56(C), pages 88-100.
    14. Czudaj, Robert L., 2019. "Dynamics between trading volume, volatility and open interest in agricultural futures markets: A Bayesian time-varying coefficient approach," Econometrics and Statistics, Elsevier, vol. 12(C), pages 78-145.
    15. Chng, Michael T., 2009. "Economic linkages across commodity futures: Hedging and trading implications," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 958-970, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiangyu & Tongurai, Jittima, 2022. "Spillovers and interdependency across base metals: Evidence from China's futures and spot markets," Resources Policy, Elsevier, vol. 75(C).
    2. Dinh, Minh Thi Hong, 2018. "The relationship between volume imbalance and spread," Research in International Business and Finance, Elsevier, vol. 44(C), pages 76-87.
    3. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    4. Joseph, Anto & Sisodia, Garima & Tiwari, Aviral Kumar, 2014. "A frequency domain causality investigation between futures and spot prices of Indian commodity markets," Economic Modelling, Elsevier, vol. 40(C), pages 250-258.
    5. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    6. Pradhan, Ashis Kumar & Mishra, Bibhuti Ranjan & Tiwari, Aviral Kumar & Hammoudeh, Shawkat, 2020. "Macroeconomic factors and frequency domain causality between Gold and Silver returns in India," Resources Policy, Elsevier, vol. 68(C).
    7. Raymond Li & David C. Broadstock, 2021. "Coal Pricing in China: Is It a Bit Too Crude?," Energies, MDPI, vol. 14(13), pages 1-13, June.
    8. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    9. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    10. Xiangyu Chen & Jittima Tongurai, 2021. "The Relationship Between China’s Real Estate Market and Industrial Metals Futures Market: Evidence from Non-price Measures of the Real Estate Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 527-561, December.
    11. Tetsuji Tanaka & Jin Guo, 2020. "International price volatility transmission and structural change: a market connectivity analysis in the beef sector," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    12. Jena, Sangram Keshari & Lahiani, Amine & Tiwari, Aviral Kumar & Roubaud, David, 2021. "Uncovering the complex asymmetric relationship between trading activity and commodity futures price: Evidenced from QNARDL study," Resources Policy, Elsevier, vol. 74(C).
    13. Souček, Michael, 2013. "Crude oil, equity and gold futures open interest co-movements," Energy Economics, Elsevier, vol. 40(C), pages 306-315.
    14. Sania Wadud & Robert D. Durand & Marc Gronwald, 2021. "Connectedness between the Crude Oil Futures and Equity Markets during the Pre- and Post-Financialisation Eras," CESifo Working Paper Series 9202, CESifo.
    15. Malay K. Dey & Chaoyan Wang, 2021. "Volume decomposition and volatility in dual-listing H-shares," Journal of Asset Management, Palgrave Macmillan, vol. 22(4), pages 301-310, July.
    16. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    17. Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).
    18. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    19. Wei, Yanfeng & Zhang, Liguo & Guo, Xiaoying & Yang, Ting, 2021. "A theoretical and simulation analysis on the power of the frequency domain causality test," Statistics & Probability Letters, Elsevier, vol. 170(C).
    20. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.