IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v16y2015i5_supplp28s-45s.html
   My bibliography  Save this article

Stock Market Volatility and Equity Trading Volume: Empirical Examination from Brazil, Russia, India and China (BRIC)

Author

Listed:
  • Pramod Kumar Naik
  • Puja Padhi

Abstract

This study empirically examines the relationship between equity market volatility and trading volume using equity market indices of four emerging economies, such as, Brazil, Russia, India and China (BRIC) over the period from 2008 to 2013. Using daily data of their respective stock market indices, we estimate an exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model to confirm the volatility asymmetry, and then we examine the volume–volatility relationship by augmenting contemporaneous and lagged trading volume in the EGARCH model. The results indicate substantial volatility asymmetry across the BRIC equity markets. We find that contemporaneous trading volumes are significantly associated with equity market volatility for all the four markets studied, supporting the mixture of distribution hypothesis. Lagged trading volumes are found to be insignificant in explaining conditional volatility. However, it is evident that trading volume fails to attenuate the degree of volatility persistence. The persistence level remains high across the BRIC markets even after incorporating trading volumes in the volatility model.

Suggested Citation

  • Pramod Kumar Naik & Puja Padhi, 2015. "Stock Market Volatility and Equity Trading Volume: Empirical Examination from Brazil, Russia, India and China (BRIC)," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 28-45, October.
  • Handle: RePEc:sae:globus:v:16:y:2015:i:5_suppl:p:28s-45s
    DOI: 10.1177/0972150915601235
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972150915601235
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972150915601235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Eric Girard & Rita Biswas, 2007. "Trading Volume and Market Volatility: Developed versus Emerging Stock Markets," The Financial Review, Eastern Finance Association, vol. 42(3), pages 429-459, August.
    3. Pindyck, Robert S, 1984. "Risk, Inflation, and the Stock Market," American Economic Review, American Economic Association, vol. 74(3), pages 335-351, June.
    4. Bohl, Martin T. & Henke, Harald, 2003. "Trading volume and stock market volatility: The Polish case," International Review of Financial Analysis, Elsevier, vol. 12(5), pages 513-525.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    9. Darrat, Ali F. & Rahman, Shafiqur & Zhong, Maosen, 2003. "Intraday trading volume and return volatility of the DJIA stocks: A note," Journal of Banking & Finance, Elsevier, vol. 27(10), pages 2035-2043, October.
    10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    11. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    12. Alsubaie, Abdullah & Najand, Mohammad, 2009. "Trading volume, time-varying conditional volatility, and asymmetric volatility spillover in the Saudi stock market," Journal of Multinational Financial Management, Elsevier, vol. 19(2), pages 139-159, April.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Giampiero Gallo & Barbara Pacini, 2000. "The effects of trading activity on market volatility," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 163-175.
    16. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    17. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    18. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    19. Pyun, Chong Soo & Lee, Sa Young & Nam, Kiseok, 2000. "Volatility and information flows in emerging equity market: A case of the Korean Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 405-420.
    20. Huang, Bwo-Nung & Yang, Chin-Wei, 2001. "An empirical investigation of trading volume and return volatility of the Taiwan Stock Market," Global Finance Journal, Elsevier, vol. 12(1), pages 55-77.
    21. Marcelo Bianconi & Joe A. Yoshino & Mariana O. Machado de Sousa, 2011. "BRIC and the U.S. Financial Crisis: An Empirical Investigation of Stocks and Bonds Markets," Discussion Papers Series, Department of Economics, Tufts University 0764, Department of Economics, Tufts University.
    22. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    23. Ping Wang & Peijie Wang & Aying Liu, 2005. "Stock return volatility and trading volume: evidence from the chinese stock market," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 3(1), pages 39-54.
    24. Mohammad Majand & Kenneth Yung, 1991. "A GARCH examination of the relationship between volume and price variability in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(5), pages 613-621, October.
    25. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    26. Sabbaghi, Omid, 2011. "Asymmetric volatility and trading volume: The G5 evidence," Global Finance Journal, Elsevier, vol. 22(2), pages 169-181.
    27. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    28. World Bank, 2010. "World Development Indicators 2010," World Bank Publications - Books, The World Bank Group, number 4373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngo Thai Hung, 2021. "Volatility Behaviour of the Foreign Exchange Rate and Transmission Among Central and Eastern European Countries: Evidence from the EGARCH Model," Global Business Review, International Management Institute, vol. 22(1), pages 36-56, February.
    2. Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
    3. Pramod Kumar Naik & Rangan Gupta & Puja Padhi, 2018. "The Relationship Between Stock Market Volatility And Trading Volume: Evidence From South Africa," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(1), pages 99-114, January-M.
    4. Balaga Mohana Rao & Puja Padhi, 2020. "Common Determinants of the Likelihood of Currency Crises in BRICS," Global Business Review, International Management Institute, vol. 21(3), pages 698-712, June.
    5. Jaber Yasmina, 2020. "Transactions Volume, Exchange Direction and Asymmetry of Volatility in Emerging Market: Evidence From Tunisian Stock Exchange," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(6), pages 318-336, December.
    6. Rajdeep Kumar Raut & Niladri Das & Ramkrishna Mishra, 2020. "Behaviour of Individual Investors in Stock Market Trading: Evidence from India," Global Business Review, International Management Institute, vol. 21(3), pages 818-833, June.
    7. Moonis Shakeel & Bhavana Srivastava, 2021. "Stylized Facts of High-frequency Financial Time Series Data," Global Business Review, International Management Institute, vol. 22(2), pages 550-564, April.
    8. Norliza Che Yahya & Ruzita Abdul Rahim, 2019. "Moderating Effect of Information Asymmetry on the Signalling Role of IPO Lockup Provision," Global Business Review, International Management Institute, vol. 20(4), pages 917-930, August.
    9. Hiren Patel, 2021. "Target Price Achievement and Target Price Accuracy Models: An Analysis of Advisory Firms’ Recommendation for the Indian Banking Stocks," Global Business Review, International Management Institute, vol. 22(2), pages 459-473, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pramod Kumar Naik & Rangan Gupta & Puja Padhi, 2018. "The Relationship Between Stock Market Volatility And Trading Volume: Evidence From South Africa," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(1), pages 99-114, January-M.
    2. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    4. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    5. Alsubaie, Abdullah & Najand, Mohammad, 2009. "Trading volume, time-varying conditional volatility, and asymmetric volatility spillover in the Saudi stock market," Journal of Multinational Financial Management, Elsevier, vol. 19(2), pages 139-159, April.
    6. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
    7. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    8. Kumar, Brajesh & Singh, Priyanka & Pandey, Ajay, 2009. "The Dynamic Relationship between Price and Trading Volume:Evidence from Indian Stock Market," IIMA Working Papers WP2009-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    10. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    11. Brajesh Kumar, 2010. "The Dynamic Relationship between Price and Trading Volume: Evidence from Indian Stock Market," Working Papers id:2379, eSocialSciences.
    12. Kao, Yu-Sheng & Zhao, Kai & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2024. "The asymmetric relationships between the Bitcoin futures’ return, volatility, and trading volume," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 524-542.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    15. Eric Girard & Mohammed Omran, 2009. "On the relationship between trading volume and stock price volatility in CASE," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 5(1), pages 110-134, February.
    16. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    17. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    18. Shekar Bose & Hafizur Rahman, 2022. "Are News Effects Necessarily Asymmetric? Evidence from Bangladesh Stock Market," SAGE Open, , vol. 12(4), pages 21582440221, October.
    19. Ekong, Christopher N. & Onye, Kenneth U., 2017. "Application of Garch Models to Estimate and Predict Financial Volatility of Daily Stock Returns in Nigeria," MPRA Paper 88309, University Library of Munich, Germany.
    20. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:16:y:2015:i:5_suppl:p:28s-45s. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.