IDEAS home Printed from
   My bibliography  Save this article

European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors


  • Fernández-Gámez, Manuel Ángel
  • Soria, Juan Antonio Campos
  • Santos, José António C.
  • Alaminos, David


This study tried to improve the understanding of the impact of context variables on the risk of financial difficulties from an European companies experience. To this end, a multilevel logistic model is developed to exploit the benefits of transnational analysis and to examine the effects of contextual factors in countries and the individual impacts of companies within each country. The resulting estimates and the post-estimation analysis based on non-parametric techniques demonstrated that country effects vary randomly but that significant variance exists in the level of financial distress within and between countries. The results also corroborate that companies’ financial variables provide extremely important information. However, the macroeconomic and regulatory factors of the environments in which these companies operate help to explain, to a large extent, the existing heterogeneity among countries.

Suggested Citation

  • Fernández-Gámez, Manuel Ángel & Soria, Juan Antonio Campos & Santos, José António C. & Alaminos, David, 2020. "European country heterogeneity in financial distress prediction: An empirical analysis with macroeconomic and regulatory factors," Economic Modelling, Elsevier, vol. 88(C), pages 398-407.
  • Handle: RePEc:eee:ecmode:v:88:y:2020:i:c:p:398-407
    DOI: 10.1016/j.econmod.2019.09.050

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Harlan D. Platt & Marjorie B. Platt, 2008. "Financial Distress Comparison Across Three Global Regions," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 1(1), pages 1-34, December.
    2. Almeida, Heitor & Campello, Murillo & Weisbach, Michael S., 2011. "Corporate financial and investment policies when future financing is not frictionless," Journal of Corporate Finance, Elsevier, vol. 17(3), pages 675-693, June.
    3. Bruneau, C. & de Bandt, O. & El Amri, W., 2012. "Macroeconomic fluctuations and corporate financial fragility," Journal of Financial Stability, Elsevier, vol. 8(4), pages 219-235.
    4. Casey, C & Bartczak, N, 1985. "Using Operating Cash Flow Data To Predict Financial Distress - Some Extensions," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 384-401.
    5. Xinzhong Bao & Qiuyan Tao & Hongyu Fu, 2015. "Dynamic financial distress prediction based on Kalman filtering," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 292-308, February.
    6. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    7. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    8. Inekwe, John Nkwoma & Jin, Yi & Valenzuela, Ma. Rebecca, 2018. "The effects of financial distress: Evidence from US GDP growth," Economic Modelling, Elsevier, vol. 72(C), pages 8-21.
    9. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    10. Edward I. Altman & Gabriele Sabato, 2007. "Modelling Credit Risk for SMEs: Evidence from the U.S. Market," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 332-357, September.
    11. Eduardo Acosta-González & Fernando Fernández-Rodríguez & Hicham Ganga, 2019. "Predicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 227-257, January.
    12. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    13. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    14. Bhattacharjee, Arnab & Han, Jie, 2014. "Financial distress of Chinese firms: Microeconomic, macroeconomic and institutional influences," China Economic Review, Elsevier, vol. 30(C), pages 244-262.
    15. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, December.
    16. Denis, David J & Denis, Diane K, 1995. "Performance Changes Following Top Management Dismissals," Journal of Finance, American Finance Association, vol. 50(4), pages 1029-1057, September.
    17. Evans, Jocelyn & Borders, Aberdeen Leila, 2014. "Strategically Surviving Bankruptcy during a Global Financial Crisis: The Importance of Understanding Chapter 15," Journal of Business Research, Elsevier, vol. 67(1), pages 2738-2742.
    18. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    19. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    20. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    21. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    22. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    23. Kevin Aretz & Peter F. Pope, 2013. "Common Factors in Default Risk Across Countries and Industries," European Financial Management, European Financial Management Association, vol. 19(1), pages 108-152, January.
    24. Jiaming Liu & Chong Wu, 2017. "Dynamic forecasting of financial distress: the hybrid use of incremental bagging and genetic algorithm—empirical study of Chinese listed corporations," Risk Management, Palgrave Macmillan, vol. 19(1), pages 32-52, February.
    25. Ibrahim Onur Oz & Tezer Yelkenci, 2017. "A theoretical approach to financial distress prediction modeling," Managerial Finance, Emerald Group Publishing, vol. 43(2), pages 212-230, February.
    26. Maria Heui-Yeong Kim & Shiguang Ma & Yanran Annie Zhou, 2016. "Survival prediction of distressed firms: evidence from the Chinese special treatment firms," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(3), pages 418-443, July.
    27. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    28. Chi Xie & Changqing Luo & Xiang Yu, 2011. "Financial distress prediction based on SVM and MDA methods: the case of Chinese listed companies," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 671-686, April.
    29. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    30. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Alaminos & Agustín del Castillo & Manuel Ángel Fernández, 2016. "A Global Model for Bankruptcy Prediction," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
    2. David Alaminos & Manuel Ángel Fernández, 2019. "Why do football clubs fail financially? A financial distress prediction model for European professional football industry," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    3. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    5. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    6. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    8. Jie Sun & Mengjie Zhou & Wenguo Ai & Hui Li, 2019. "Dynamic prediction of relative financial distress based on imbalanced data stream: from the view of one industry," Risk Management, Palgrave Macmillan, vol. 21(4), pages 215-242, December.
    9. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    10. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    11. David A. Hensher & Stewart Jones & William H. Greene, 2007. "An Error Component Logit Analysis of Corporate Bankruptcy and Insolvency Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 83(260), pages 86-103, March.
    12. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 12(4), pages 1-17, September.
    13. Bravo-Urquiza, Francisco & Moreno-Ureba, Elena, 2021. "Does compliance with corporate governance codes help to mitigate financial distress?," Research in International Business and Finance, Elsevier, vol. 55(C).
    14. Inekwe, John Nkwoma & Jin, Yi & Valenzuela, Ma. Rebecca, 2018. "The effects of financial distress: Evidence from US GDP growth," Economic Modelling, Elsevier, vol. 72(C), pages 8-21.
    15. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    16. du Jardin, Philippe, 2021. "Forecasting corporate failure using ensemble of self-organizing neural networks," European Journal of Operational Research, Elsevier, vol. 288(3), pages 869-885.
    17. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    18. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    19. Gupta, Jairaj & Chaudhry, Sajid, 2019. "Mind the tail, or risk to fail," Journal of Business Research, Elsevier, vol. 99(C), pages 167-185.
    20. Chih‐Chun Chen & Chun‐Da Chen & Donald Lien, 2020. "Financial distress prediction model: The effects of corporate governance indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1238-1252, December.

    More about this item


    Financial distress; Country effect; Multilevel analysis; Macroeconomic factors; Regulatory factors; European countries;
    All these keywords.

    JEL classification:

    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other
    • E66 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General Outlook and Conditions
    • F21 - International Economics - - International Factor Movements and International Business - - - International Investment; Long-Term Capital Movements
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:88:y:2020:i:c:p:398-407. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.