IDEAS home Printed from
   My bibliography  Save this article

Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues


  • Yang, Jun
  • Wang, Xiaobing
  • Ma, Hengyun
  • Bai, Junfei
  • Jiang, Ye
  • Yu, Hai


China’s energy needs and its environment are facing great challenges because of the country’s rapid urbanization and industrialization. It is China’s strategic choice to exploit renewable energy to guarantee its energy security and reduce CO2 emissions. Crop residue has been identified and targeted by the Chinese government as a promising renewable energy resource. The purposes of this study are to investigate the potential supply of crop residue nationally and regionally, the vertical value chain from the field to final usage of these crop residues, as well as to conduct cost-benefit analysis on power plant-based crop residue. Our results show that the large amount of crop residue in China has great potential to meet the country’s demand for renewable energy. Crop residues, however, are distributed unequally across regions. Therefore the use of crop residues to produce energy should be different across provinces, especially with respect to large power generation plants. Government supports right now are critical for power plants based on crop residue to survive. Based on our findings, it is suggested that China should attach more importance to technology innovation and creative policy reforms to improve the overall efficiency of the industry and reduce the cost of feedstock.

Suggested Citation

  • Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:717-723
    DOI: 10.1016/j.apenergy.2013.10.019

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Junfeng, Li & Wan, Yih-huei & Ohi, James M., 1997. "Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential," Applied Energy, Elsevier, vol. 56(3-4), pages 381-394, March.
    3. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    4. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
    5. La Rovere, Emilio Lèbre & Pereira, André Santos & Simões, André Felipe, 2011. "Biofuels and Sustainable Energy Development in Brazil," World Development, Elsevier, vol. 39(6), pages 1026-1036, June.
    6. Jun Yang & Huanguang Qiu & Jikun Huang & Scott Rozelle, 2008. "Fighting global food price rises in the developing world: the response of China and its effect on domestic and world markets," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 453-464, November.
    7. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Gradual reforms and the emergence of energy market in China: Evidence from tests for convergence of energy prices," Energy Policy, Elsevier, vol. 37(11), pages 4834-4850, November.
    8. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    9. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
    10. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    11. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
    12. Hallam, Arne & Anderson, I. C. & Buxton, D. R., 2001. "Comparative Economic Analysis of Perennial, Annual and Intercrops for Biomass Production," Staff General Research Papers Archive 5076, Iowa State University, Department of Economics.
    13. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    14. Li, Shi-Zhong & Chan-Halbrendt, Catherine, 2009. "Ethanol production in (the) People's Republic of China: Potential and technologies," Applied Energy, Elsevier, vol. 86(Supplemen), pages 162-169, November.
    15. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    16. Jikun Huang & Jun Yang & Scott Rozelle, 2010. "China's agriculture: drivers of change and implications for China and the rest of world," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 47-55, November.
    17. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2016. "Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach," Sustainability, MDPI, Open Access Journal, vol. 8(8), pages 1-23, August.
    2. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    3. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    4. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    5. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    6. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    7. Zhao, Zhen-Yu & Zuo, Jian & Wu, Pan-Hao & Yan, Hong & Zillante, George, 2016. "Competitiveness assessment of the biomass power generation industry in China: A five forces model study," Renewable Energy, Elsevier, vol. 89(C), pages 144-153.
    8. repec:gam:jsusta:v:10:y:2018:i:5:p:1338-:d:143249 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:717-723. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.