IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp305-318.html
   My bibliography  Save this article

Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China

Author

Listed:
  • Liu, Jin
  • Wu, Jianguo
  • Liu, Fengqiao
  • Han, Xingguo

Abstract

Inner Mongolia Autonomous Region (IMAR) is one of China’s strategic energy bases for the 21st century. While bioenergy in IMAR may play an important role in securing future energy supply, little research has been done so far, particularly for crop stalk resources as a potential source of bioenergy in this region. In this study we systematically analyzed the temporal and spatial patterns of crop stalk resources, evaluated the bioenergy potential of crop stalk resources, and explored possible pathways of developing stalk-based energy strategies in Inner Mongolia. Our results show that the total crop stalk yield in IMAR increased consistently from 1980 to 2008, with an average annual increase of 16.3%. Between 2004 and 2008, 26.14million tons of crop stalks were produced each year in IMAR, 8.82million tons of which could be used for biofuel production. Grain crops contributed most to the total amount of stalks for energy production, of which corn stalks were the largest contributor, accounting for 62% of the total crop stalk yield. Based on the current trend, crop stalk yields may continue to increase in the future. Geographically, the abundance of biofuelable crop stalk resources, either on a per capita or per unit of area basis, had a spatial pattern of “high on East and West and low in the middle”. Our findings suggest that IMAR has the potential for developing stalk-based bioenergy to improve its current overwhelmingly coal-dominated energy structure. However, more detailed and comprehensive studies are needed to figure out how exactly such bioenergy development should be carried out in a way that would promote the regional sustainability of Inner Mongolia – i.e., simultaneously providing social, economic, and ecological benefits.

Suggested Citation

  • Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:305-318
    DOI: 10.1016/j.apenergy.2011.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    2. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    3. Shapouri, Hosein & Duffield, James A. & Graboski, Michael S., 1995. "Estimating the Net Energy Balance of Corn Ethanol," Agricultural Economic Reports 34005, United States Department of Agriculture, Economic Research Service.
    4. Anselmo Filho, Pedro & Badr, Ossama, 2004. "Biomass resources for energy in North-Eastern Brazil," Applied Energy, Elsevier, vol. 77(1), pages 51-67, January.
    5. Jane Qiu, 2011. "China unveils green targets," Nature, Nature, vol. 471(7337), pages 149-149, March.
    6. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    7. Lawrence, Ben & Annamalai, Kalyan & Sweeten, John M. & Heflin, Kevin, 2009. "Cofiring coal and dairy biomass in a 29Â kWt furnace," Applied Energy, Elsevier, vol. 86(11), pages 2359-2372, November.
    8. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    9. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    10. Cai, Junmeng & Liu, Ronghou & Deng, Chunjian, 2008. "An assessment of biomass resources availability in Shanghai: 2005 analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1997-2004, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    2. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    3. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    4. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    5. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    6. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Jinghui Bao & Changbai Xiu & Yuchun Liu & Jie Li, 2024. "Assessment of Rural Industry Integration Development, Spatiotemporal Evolution Characteristics, and Regional Disparities in Ethnic Regions: A Case Study of Inner Mongolia Autonomous Region Counties," Sustainability, MDPI, vol. 16(15), pages 1-29, July.
    8. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    9. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    10. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    11. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    12. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    13. Li, Hongze & Guo, Sen & Cui, Liuyang & Yan, Jiaojiao & Liu, Jiaojiao & Wang, Bao, 2015. "Review of renewable energy industry in Beijing: Development status, obstacles and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 711-725.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    2. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    3. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    4. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    5. Eaves, James & Eaves, Stephen, 2007. "Renewable corn-ethanol and energy security," Energy Policy, Elsevier, vol. 35(11), pages 5958-5963, November.
    6. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    7. Rausch, Kent D. & Belyea, Ronald L. & Singh, Vijay & Tumbleson, M.E., 2007. "Corn processing coproducts from ethanol production," Biofuels, Food and Feed Tradeoffs Conference, April 12-13, 2007, St, Louis, Missouri 48775, Farm Foundation.
    8. Zhang, Caixia & Xie, Gaodi & Li, Shimei & Ge, Liqiang & He, Tingting, 2010. "The productive potentials of sweet sorghum ethanol in China," Applied Energy, Elsevier, vol. 87(7), pages 2360-2368, July.
    9. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    10. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    11. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    12. R. Lal, 2007. "Carbon Management in Agricultural Soils," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(2), pages 303-322, February.
    13. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    14. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    15. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    16. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    17. Tembo, Gelson & Epplin, Francis M. & Huhnke, Raymond L., 2003. "Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(3), pages 1-23, December.
    18. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Zhao, Lili & Chang, Shiyan & Wang, Hailin & Zhang, Xiliang & Ou, Xunmin & Wang, Baiyu & Wu, Maorong, 2015. "Long-term projections of liquid biofuels in China: Uncertainties and potential benefits," Energy, Elsevier, vol. 83(C), pages 37-54.
    20. Yang, Jun & Dai, Guanghui & Ma, Luyi & Jia, Liming & Wu, Jian & Wang, Xiaohua, 2013. "Forest-based bioenergy in China: Status, opportunities, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 478-485.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:305-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.