IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009isupplement1ps95-s99.html
   My bibliography  Save this article

Cassava, a potential biofuel crop in (the) People's Republic of China

Author

Listed:
  • Jansson, Christer
  • Westerbergh, Anna
  • Zhang, Jiaming
  • Hu, Xinwen
  • Sun, Chuanxin

Abstract

Cassava ranks fifth among crops in global starch production. It is used as staple food in many tropical countries of Africa, Asia and Latin America. In (the) People's Republic of China, although not yet a staple food, cassava is of major economic importance for starch for a large area of southern (the) PRC, especially in the provinces of Guangdong, Guanxi, Yunnan and Hainan. Recently, cassava-derived bioethanol production has been increasing due to its economic benefits compared to other bioethanol-producing crops in the country. We discuss here the possible potentials of cassava for bioethanol production.

Suggested Citation

  • Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 95-99, November.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s95-s99
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00204-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Zhiyuan & Fang, Fang & Ben, DaoFeng & Pu, Gengqiang & Wang, Chengtao, 2004. "Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China," Applied Energy, Elsevier, vol. 78(3), pages 247-256, July.
    2. Hu, Zhiyuan & Tan, Piqiang & Pu, Gengqiang, 2006. "Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China," Applied Energy, Elsevier, vol. 83(8), pages 819-840, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    2. Hongshen Li & Hongrui Liu & Shizhong Li, 2021. "Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation," Energies, MDPI, vol. 14(19), pages 1-14, October.
    3. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    4. Buresová, Iva & Hrivna, Ludek, 2011. "Effect of wheat gluten proteins on bioethanol yield from grain," Applied Energy, Elsevier, vol. 88(4), pages 1205-1210, April.
    5. Bambawale, Malavika Jain & Sovacool, Benjamin K., 2011. "China's energy security: The perspective of energy users," Applied Energy, Elsevier, vol. 88(5), pages 1949-1956, May.
    6. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    7. Ohimain, Elijah I., 2010. "Emerging bio-ethanol projects in Nigeria: Their opportunities and challenges," Energy Policy, Elsevier, vol. 38(11), pages 7161-7168, November.
    8. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    9. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    10. Zhang, Yong & Yu, Yifeng & Li, Tiezhu & Zou, Bai, 2011. "Analyzing Chinese consumers' perception for biofuels implementation: The private vehicles owner's investigating in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2299-2309, June.
    11. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    12. Qian Kang & Tianwei Tan, 2016. "Exergy and CO 2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    13. Zhang, Yong & Bao, Xiangtai & Ren, Gang & Cai, Xiaohua & Li, Jian, 2012. "Analysing the status, obstacles and recommendations for WCOs of restaurants as biodiesel feedstocks in China from supply chain’ perspectives," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 20-37.
    14. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    15. Ye, Fei & Li, Yina & Lin, Qiang & Zhan, Yuanzhu, 2017. "Modeling of China's cassava-based bioethanol supply chain operation and coordination," Energy, Elsevier, vol. 120(C), pages 217-228.
    16. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    17. Luo, Gang & Xie, Li & Zou, Zhonghai & Zhou, Qi & Wang, Jing-Yuan, 2010. "Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH," Applied Energy, Elsevier, vol. 87(12), pages 3710-3717, December.
    18. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    19. Nalawade, Satish & Nalawade, Swati & Liu, Chunlin & Jansson, Christer & Sun, Chuanxin, 2012. "Development of an efficient Tissue Culture after Crossing (TCC) system for transgenic improvement of barley as a bioenergy crop," Applied Energy, Elsevier, vol. 91(1), pages 405-411.
    20. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behera, Shuvashish & Kar, Shaktimay & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices," Applied Energy, Elsevier, vol. 87(1), pages 96-100, January.
    2. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    3. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    4. Jean Nepomuscene Ntihuga & Thomas Senn & Peter Gschwind & Reinhard Kohlus, 2013. "Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System," Energies, MDPI, vol. 6(4), pages 1-19, April.
    5. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    6. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    7. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    8. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    9. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    10. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    11. Hu, Zhiyuan & Tan, Piqiang & Pu, Gengqiang, 2006. "Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China," Applied Energy, Elsevier, vol. 83(8), pages 819-840, August.
    12. Lane, Bradley W., 2019. "Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport," Journal of Transport Geography, Elsevier, vol. 81(C).
    13. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    14. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    15. Fang, Fang & Wei, Le, 2011. "Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units," Applied Energy, Elsevier, vol. 88(3), pages 814-824, March.
    16. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    17. Yang, Jing & Zhang, Peidong, 2011. "Assessment methods of carbon dioxide emitted from bioenergy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2684-2689, August.
    18. Xiangzheng Deng & Jianzhi Han & Fang Yin, 2012. "Net Energy, CO 2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China," Energies, MDPI, vol. 5(7), pages 1-15, June.
    19. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    20. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:supplement1:p:s95-s99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.