IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v56y2013icp210-220.html
   My bibliography  Save this article

Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China

Author

Listed:
  • Liu, Beibei
  • Wang, Feng
  • Zhang, Bing
  • Bi, Jun

Abstract

Cassava-based fuel ethanol (CFE) is playing an increasingly important role in renewable transportation energy in the Guangxi Province in China. Previous studies have evaluated the energy and greenhouse gas (GHG) performance of CFE, but they have largely overlooked the influences of different agricultural planting modes. In this study, five scenarios related to cassava planting modes were selected to evaluate the lifecycle energy balance and GHG emissions of the CFE system. The results show that, although all the five CFE scenarios show positive net energy values (NEV) and GHG emissions savings compared with the conventional gasoline, the planting modes have significant impacts on their energy and GHG performance. Modes that are considered intensive (i.e. high fertilizer use intensity and highly mechanized harvesting) generally show poorer performance than the extensive ones, primarily because of the intensive energy consumption and GHG emissions during nitrogen fertilizer production, the N2O emission of nitrogen fertilizer use, and higher yield loss rate caused by mechanized harvesting. This study shows that it is important to evaluate the planting modes when producing bioethanol in order to gain an understanding of the life-cycle energy use and GHG performance.

Suggested Citation

  • Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
  • Handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:210-220
    DOI: 10.1016/j.enpol.2012.12.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512011056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.12.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    3. Liu, Beibei & Wang, Feng & Yunze, Wu & Jun, Bi & Maoliang, Bu & Gao, Juan, 2012. "Life cycle implication of the potential commercialization of stover-based E85 in China," Energy Policy, Elsevier, vol. 43(C), pages 371-380.
    4. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    5. Hu, Zhiyuan & Fang, Fang & Ben, DaoFeng & Pu, Gengqiang & Wang, Chengtao, 2004. "Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China," Applied Energy, Elsevier, vol. 78(3), pages 247-256, July.
    6. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    7. Wesseler, Justus, 2007. "Opportunities (`costs) matter: A comment on Pimentel and Patzek "Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower"," Energy Policy, Elsevier, vol. 35(2), pages 1414-1416, February.
    8. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    9. Nguyen, Thu Lan Thi & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand," Energy Policy, Elsevier, vol. 35(9), pages 4585-4596, September.
    10. Henke, J.M. & Klepper, G. & Schmitz, N., 2005. "Tax exemption for biofuels in Germany: Is bio-ethanol really an option for climate policy?," Energy, Elsevier, vol. 30(14), pages 2617-2635.
    11. Wong, Christine P. W., 1986. "Intermediate technology for development: Small-scale chemical fertilizer plants in China," World Development, Elsevier, vol. 14(10-11), pages 1329-1346.
    12. Silalertruksa, Thapat & Gheewala, Shabbir H., 2009. "Environmental sustainability assessment of bio-ethanol production in Thailand," Energy, Elsevier, vol. 34(11), pages 1933-1946.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    3. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    4. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    5. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    6. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    7. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    8. Ye, Fei & Li, Yina & Lin, Qiang & Zhan, Yuanzhu, 2017. "Modeling of China's cassava-based bioethanol supply chain operation and coordination," Energy, Elsevier, vol. 120(C), pages 217-228.
    9. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    10. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    11. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    12. Arora, Richa & Behera, Shuvashish & Kumar, Sachin, 2015. "Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 699-717.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    2. Hao, Han & Wang, Hewu & Song, Lingjun & Li, Xihao & Ouyang, Minggao, 2010. "Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing," Applied Energy, Elsevier, vol. 87(10), pages 3212-3217, October.
    3. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    5. Liu, Beibei & Wang, Feng & Yunze, Wu & Jun, Bi & Maoliang, Bu & Gao, Juan, 2012. "Life cycle implication of the potential commercialization of stover-based E85 in China," Energy Policy, Elsevier, vol. 43(C), pages 371-380.
    6. Borrion, Aiduan Li & McManus, Marcelle C. & Hammond, Geoffrey P., 2012. "Environmental life cycle assessment of lignocellulosic conversion to ethanol: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4638-4650.
    7. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
    8. Yang, Q. & Chen, G.Q., 2012. "Nonrenewable energy cost of corn-ethanol in China," Energy Policy, Elsevier, vol. 41(C), pages 340-347.
    9. Loan T. Le, 2016. "Biofuel Production in Vietnam: Cost-Effectiveness, Energy and GHG Balances," EEPSEA Research Report rr20160315, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    10. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    11. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    12. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    13. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    14. Vang Rasmussen, Laura & Rasmussen, Kjeld & Birch-Thomsen, Torben & Kristensen, Søren B.P. & Traoré, Oumar, 2012. "The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali," Energy Policy, Elsevier, vol. 41(C), pages 575-583.
    15. Behera, Shuvashish & Kar, Shaktimay & Mohanty, Rama Chandra & Ray, Ramesh Chandra, 2010. "Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices," Applied Energy, Elsevier, vol. 87(1), pages 96-100, January.
    16. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    17. Wang, Zhiwei & Li, Zaifeng & Lei, Tingzhou & Yang, Miao & Qi, Tian & Lin, Lu & Xin, Xiaofei & Ajayebi, Atta & Yang, Yantao & He, Xiaofeng & Yan, Xiaoyu, 2016. "Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate," Applied Energy, Elsevier, vol. 183(C), pages 170-181.
    18. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    19. Sultana, Arifa & Kumar, Amit, 2011. "Development of energy and emission parameters for densified form of lignocellulosic biomass," Energy, Elsevier, vol. 36(5), pages 2716-2732.
    20. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:56:y:2013:i:c:p:210-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.