IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i10p3212-3217.html
   My bibliography  Save this article

Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing

Author

Listed:
  • Hao, Han
  • Wang, Hewu
  • Song, Lingjun
  • Li, Xihao
  • Ouyang, Minggao

Abstract

Gas-to-liquids (GTL) as an alternative to diesel is considered to be one of the technical options to reduce petroleum consumption in the on-road transportation sector. Between May and August 2007, a joint demonstration program by Tsinghua University, Beijing Transit, Cummins Corporation and Shell Corporation was carried out in Beijing. The program focused on the supply systems and vehicle use of GTL fuel. The demonstration fleet was formed by four transit buses fueled with GTL and four with diesel. It was demonstrated that GTL has good compatibility with diesel in terms of fuel supply system and vehicle use. This paper compares the energy consumption and GHG emissions of diesel and GTL fuel supply chains by life cycle analysis based on demonstration results. The results indicate GTL's large range (reported 54-70%) in synthesis efficiency, as the key factor in determining energy consumption and GHG emissions within the GTL fuel supply chain. For the probable case (GTL synthesis efficiency: 65%), the life cycle energy consumption and GHG emissions of GTL fuel are 42.5% and 12.6% higher than that of diesel. For two sensitivity analysis cases (GTL synthesis efficiency: 54% and70%), energy consumptions are 74.2% and 31.2% higher and GHG emissions are 27.3% and 7.4% higher than that of the diesel fuel supply chain. If the efficiency of the GTL synthesis process is improved to 75%, then the GHG emissions level of the GTL fuel supply chain can be reduced to the same level as the diesel fuel supply chain.

Suggested Citation

  • Hao, Han & Wang, Hewu & Song, Lingjun & Li, Xihao & Ouyang, Minggao, 2010. "Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing," Applied Energy, Elsevier, vol. 87(10), pages 3212-3217, October.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:10:p:3212-3217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00093-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages 178-188, November.
    2. Wang, Hewu & Hao, Han & Li, Xihao & Zhang, Ke & Ouyang, Minggao, 2009. "Performance of Euro III common rail heavy duty diesel engine fueled with Gas to Liquid," Applied Energy, Elsevier, vol. 86(10), pages 2257-2261, October.
    3. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    4. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    5. Hekkert, Marko P. & Hendriks, Franka H. J. F. & Faaij, Andre P. C. & Neelis, Maarten L., 2005. "Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development," Energy Policy, Elsevier, vol. 33(5), pages 579-594, March.
    6. Yee, Kian Fei & Tan, Kok Tat & Abdullah, Ahmad Zuhairi & Lee, Keat Teong, 2009. "Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability," Applied Energy, Elsevier, vol. 86(Supplemen), pages 189-196, November.
    7. Hu, Zhiyuan & Fang, Fang & Ben, DaoFeng & Pu, Gengqiang & Wang, Chengtao, 2004. "Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China," Applied Energy, Elsevier, vol. 78(3), pages 247-256, July.
    8. Higo, Masashi & Dowaki, Kiyoshi, 2010. "A Life Cycle Analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea," Applied Energy, Elsevier, vol. 87(1), pages 58-67, January.
    9. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    10. Hossain, Ijaz & Gulen, Gurcan, 2007. "Lifecycle analysis of different urban transport options for Bangladesh," Energy Policy, Elsevier, vol. 35(10), pages 4909-4918, October.
    11. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García Sánchez, Juan Antonio & López Martínez, José María & Lumbreras Martín, Julio & Flores Holgado, Maria Nuria, 2012. "Comparison of Life Cycle energy consumption and GHG emissions of natural gas, biodiesel and diesel buses of the Madrid transportation system," Energy, Elsevier, vol. 47(1), pages 174-198.
    2. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Tripathi, Shashwat, 2022. "Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks," Applied Energy, Elsevier, vol. 308(C).
    3. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    4. Dinesh Kumar Madheswaran & Mohanraj Thangamuthu & Sakthivel Gnanasekaran & Suresh Gopi & Tamilvanan Ayyasamy & Sujit S. Pardeshi, 2023. "Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    5. Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
    6. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    7. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    8. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    9. Xiangsheng Dou & Huanying Cui, 2017. "Low-carbon society creation and socio-economic structural transition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1577-1599, October.
    10. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    11. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    12. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    13. Achour, H. & Carton, J.G. & Olabi, A.G., 2011. "Estimating vehicle emissions from road transport, case study: Dublin City," Applied Energy, Elsevier, vol. 88(5), pages 1957-1964, May.
    14. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
    15. Ma, Xiaolei & Miao, Ran & Wu, Xinkai & Liu, Xianglong, 2021. "Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing," Energy, Elsevier, vol. 216(C).
    16. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    17. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    18. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2020. "Real-world fuel efficiency and emissions from an urban diesel bus engine under transient operating conditions," Applied Energy, Elsevier, vol. 261(C).
    19. Ma, Linwei & Geng, Jia & Li, Weqi & Liu, Pei & Li, Zheng, 2013. "The development of natural gas as an automotive fuel in China," Energy Policy, Elsevier, vol. 62(C), pages 531-539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    2. Sajjad, H. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Arbab, M.I. & Imtenan, S. & Rahman, S.M. Ashrafur, 2014. "Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 961-986.
    3. Liu, Beibei & Wang, Feng & Zhang, Bing & Bi, Jun, 2013. "Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China," Energy Policy, Elsevier, vol. 56(C), pages 210-220.
    4. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    5. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    6. Jean Nepomuscene Ntihuga & Thomas Senn & Peter Gschwind & Reinhard Kohlus, 2013. "Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System," Energies, MDPI, vol. 6(4), pages 1-19, April.
    7. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    8. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    9. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    10. Achten, Wouter M.J. & Almeida, Joana & Fobelets, Vincent & Bolle, Evelien & Mathijs, Erik & Singh, Virendra P. & Tewari, Dina N. & Verchot, Louis V. & Muys, Bart, 2010. "Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India," Applied Energy, Elsevier, vol. 87(12), pages 3652-3660, December.
    11. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    12. Mansour, Charbel J. & Haddad, Marc G., 2017. "Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon," Energy Policy, Elsevier, vol. 107(C), pages 167-181.
    13. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    14. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    15. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    16. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    17. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    18. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    19. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    20. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:10:p:3212-3217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.