IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp391-398.html
   My bibliography  Save this article

Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

Author

Listed:
  • Hao, Han
  • Liu, Feiqi
  • Liu, Zongwei
  • Zhao, Fuquan

Abstract

The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NOx and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

Suggested Citation

  • Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:391-398
    DOI: 10.1016/j.apenergy.2016.08.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    2. Hao, Han & Wang, Hewu & Yi, Ran, 2011. "Hybrid modeling of China’s vehicle ownership and projection through 2050," Energy, Elsevier, vol. 36(2), pages 1351-1361.
    3. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
    4. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    5. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    6. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    7. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    8. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    9. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2012. "Fuel consumption and life cycle GHG emissions by China’s on-road trucks: Future trends through 2050 and evaluation of mitigation measures," Energy Policy, Elsevier, vol. 43(C), pages 244-251.
    10. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    11. Walls, W.D., 2010. "Petroleum refining industry in China," Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
    12. Wang, Buyu & Wang, Zhi & Shuai, Shijin & Xu, Hongming, 2015. "Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines," Applied Energy, Elsevier, vol. 160(C), pages 769-776.
    13. Hao, Han & Wang, Hewu & Song, Lingjun & Li, Xihao & Ouyang, Minggao, 2010. "Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing," Applied Energy, Elsevier, vol. 87(10), pages 3212-3217, October.
    14. Li, Weiqi & Fu, Feng & Ma, Linwei & Liu, Pei & Li, Zheng & Dai, Yaping, 2013. "A process-based model for estimating the well-to-tank cost of gasoline and diesel in China," Applied Energy, Elsevier, vol. 102(C), pages 718-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    2. An, Yanzhao & Tang, Qinglong & Vallinayagam, Raman & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion by high-pressure multiple injections with low-octane fuel," Applied Energy, Elsevier, vol. 248(C), pages 626-639.
    3. Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
    4. Wang, Libing & Wu, Zengyang & Ahmed, Ahfaz & Badra, Jihad A. & Sarathy, S. Mani & Roberts, William L. & Fang, Tiegang, 2019. "Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate," Energy, Elsevier, vol. 170(C), pages 375-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Han & Liu, Zongwei & Zhao, Fuquan, 2017. "An overview of energy efficiency standards in China's transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 246-256.
    2. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    3. Han Hao & Feiqi Liu & Xin Sun & Zongwei Liu & Fuquan Zhao, 2019. "Quantifying the Energy, Environmental, Economic, Resource Co-Benefits and Risks of GHG Emissions Abatement: The Case of Passenger Vehicles in China," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    4. Han Hao & Feiqi Liu & Zongwei Liu & Fuquan Zhao, 2017. "Measuring Energy Efficiency in China’s Transport Sector," Energies, MDPI, vol. 10(5), pages 1-18, May.
    5. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    6. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    7. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2018. "Impacts of a super credit policy on electric vehicle penetration and compliance with China's Corporate Average Fuel Consumption regulation," Energy, Elsevier, vol. 155(C), pages 746-762.
    8. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    9. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    10. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    11. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    12. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    13. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    14. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    15. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    16. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    17. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    18. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    19. Hualong Yang & Xuefei Ma & Yuwei Xing, 2017. "Trends in CO 2 Emissions from China-Oriented International Marine Transportation Activities and Policy Implications," Energies, MDPI, vol. 10(7), pages 1-17, July.
    20. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:391-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.