IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v110y2013icp82-89.html
   My bibliography  Save this article

Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations

Author

Listed:
  • Yang, Fuxia
  • Yang, Mian
  • Nie, Hualin

Abstract

Energy saving and emissions reduction has recalibrated China’s economic development mode to a more sustainable way. In this paper, we construct a novel total factor productivity (TFP) index using a sub-vector enhanced hyperbolic distance function, which simultaneously credits for an expansion in economic output along with contractions in energy input and undesirable output. Subsequently, this index is employed to evaluate the TFP change for 30 provincial regions in China during 2006–2015. The results indicate that China’s productivity considering energy saving and emissions reduction experiences a gradual improvement shifting from decline to increase throughout this decade, and the amelioration can mainly be attributed to the efficiency improvements from the east regions, while the contributions from technical change component will not emerge until 2013 due to insufficient energy and environmental R&D investments. Finally, some policy recommendations are also put forward on how to enhance China’s productivity.

Suggested Citation

  • Yang, Fuxia & Yang, Mian & Nie, Hualin, 2013. "Productivity trends of Chinese regions: A perspective from energy saving and environmental regulations," Applied Energy, Elsevier, vol. 110(C), pages 82-89.
  • Handle: RePEc:eee:appene:v:110:y:2013:i:c:p:82-89
    DOI: 10.1016/j.apenergy.2013.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoruk, BarIs K. & Zaim, Osman, 2005. "Productivity growth in OECD countries: A comparison with Malmquist indices," Journal of Comparative Economics, Elsevier, vol. 33(2), pages 401-420, June.
    2. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    3. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    4. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
    5. Surender Kumar & Shunsuke Managi, 2009. "Economic Development and Environment," Natural Resource Management and Policy, in: The Economics of Sustainable Development, chapter 0, pages 11-35, Springer.
    6. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528, Decembrie.
    7. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    8. Wang, Qiang & Chen, Yong, 2010. "Energy saving and emission reduction revolutionizing China's environmental protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 535-539, January.
    9. Shunsuke Managi & Shinji Kaneko, 2006. "Economic growth and the environment in China: an empirical analysis of productivity," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(1), pages 89-133.
    10. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    11. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    12. W. Diewert & Alice Nakamura, 2003. "Index Number Concepts, Measures and Decompositions of Productivity Growth," Journal of Productivity Analysis, Springer, vol. 19(2), pages 127-159, April.
    13. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    14. Grifell-Tatje, E. & Lovell, C. A. K., 1996. "Deregulation and productivity decline: The case of Spanish bavings banks," European Economic Review, Elsevier, vol. 40(6), pages 1281-1303, June.
    15. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    16. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    17. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    18. Bert Balk & Rolf Färe & Shawna Grosskopf & Dimitris Margaritis, 2008. "Exact relations between Luenberger productivity indicators and Malmquist productivity indexes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(1), pages 187-190, April.
    19. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    20. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    21. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    22. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    23. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    24. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    25. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    26. Yang, Mian & Yang, Fu-Xia & Chen, Xing-Peng, 2011. "Effects of substituting energy with capital on China's aggregated energy and environmental efficiency," Energy Policy, Elsevier, vol. 39(10), pages 6065-6072, October.
    27. Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
    28. Shunsuke Managi & Shinji Kaneko, 2009. "Chinese Economic Development and the Environment," Books, Edward Elgar Publishing, number 13562.
    29. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    30. Thijs ten Raa & Victoria Shestalova, 2021. "The Solow Residual, Domar Aggregation, and Inefficiency: A Synthesis of TFP Measures," World Scientific Book Chapters, in: Efficiency and Input-Output Analyses Theory and Applications, chapter 2, pages 23-38, World Scientific Publishing Co. Pte. Ltd..
    31. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    32. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
    33. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    34. Fulginiti, Lilyan E. & Perrin, Richard K., 1997. "LDC agriculture: Nonparametric Malmquist productivity indexes," Journal of Development Economics, Elsevier, vol. 53(2), pages 373-390, August.
    35. Fare, Rolf & Grosskopf, Shawna & Zaim, Osman, 2002. "Hyperbolic efficiency and return to the dollar," European Journal of Operational Research, Elsevier, vol. 136(3), pages 671-679, February.
    36. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2008. "Total factor productivity growth in China's agricultural sector," China Economic Review, Elsevier, vol. 19(4), pages 580-593, December.
    37. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    38. Jose Zofio & C. A. Knox Lovell, 2001. "Graph efficiency and productivity measures: an application to US agriculture," Applied Economics, Taylor & Francis Journals, vol. 33(11), pages 1433-1442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Tengfei Huo & Hong Ren & Weiguang Cai & Wei Feng & Miaohan Tang & Nan Zhou, 2018. "The total-factor energy productivity growth of China’s construction industry: evidence from the regional level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1593-1616, July.
    3. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    4. Dong, Zhaoyingzi & Wang, Shaojian & Zhang, Weiwen & Shen, Huijun, 2022. "The dynamic effect of environmental regulation on firms’ energy consumption behavior-Evidence from China's industrial firms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Wang, Yao & Lin, Boqiang & Li, Minyang, 2021. "Is household electricity saving a virtuous circle? A case study of the first-tier cities in China," Applied Energy, Elsevier, vol. 285(C).
    6. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    7. Wang, Yao & Lin, Boqiang, 2022. "Can energy poverty be alleviated by targeting the low income? Constructing a multidimensional energy poverty index in China," Applied Energy, Elsevier, vol. 321(C).
    8. Yan, Zheming & Zhou, Zicheng & Du, Kerui, 2023. "How does environmental regulatory stringency affect energy consumption? Evidence from Chinese firms," Energy Economics, Elsevier, vol. 118(C).
    9. Chunrong Yan & Danyang Di & Guoxiang Li & Jianmei Wang, 2022. "Environmental regulation and the supply efficiency of environmental public services: Evidence from environmental decentralization of 289 cities in China," Growth and Change, Wiley Blackwell, vol. 53(2), pages 515-535, June.
    10. Krzysztof Józef Jankowski & Anna Nogalska, 2022. "Meat and Bone Meal and the Energy Balance of Winter Oilseed Rape—A Case Study in North-Eastern Poland," Energies, MDPI, vol. 15(11), pages 1-18, May.
    11. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    12. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    13. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
    2. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    3. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    4. Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017. "Aggregate green productivity growth in OECD’s countries," International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
    5. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    6. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    8. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
    11. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    12. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    13. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    14. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    15. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    16. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    17. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    18. Chen, Chih Cheng, 2017. "Measuring departmental and overall regional performance: applying the multi-activity DEA model to Taiwan׳s cities/counties," Omega, Elsevier, vol. 67(C), pages 60-80.
    19. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    20. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:82-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.