IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421007186.html
   My bibliography  Save this article

Driving factors of virtual water in international grain trade: A study for belt and road countries

Author

Listed:
  • Xia, Wenjun
  • Chen, Xiaohong
  • Song, Chao
  • Pérez-Carrera, Alejo

Abstract

Water resources are distributed in the form of virtual water through international trade, which influences the water supply and consumption of each country. Therefore, it is of significance to study the driving factors of grain virtual water trade to alleviate water stress and guarantee food security. In this paper, the virtual water volume of grain crops traded between China and countries along the Belt and Road (B&R) from 2000 to 2019 was calculated, and a gravity model using panel data was applied to explore the effect of natural and socioeconomic factors on virtual water trade. The virtual water export from B&R countries to China obviously increased in the twenty years and the contributions of various crops to virtual water were more balanced. The regression results indicate that GDP and exchange rate were positively correlated with virtual water inflow, while per capital water resources, arable land, geographic distance, and population were negative factors that hindered virtual water import. The most powerful driving force for grain virtual water trade is water endowment. GDP is an important driver on importing virtual water for countries without water shortage, and a large number of local water resources will not obviously inhibit the driving force of economic strength. By comparing the contribution of factors to virtual water in the past ten years, it can be found that the contribution rate of distance decreased due to the development of transportation industry which reduced the transportation cost of exporting products. The contribution rate of GDP and exchange rate increased, because economic globalization has promoted the effect of economic factors on grain trade. Therefore, the trade structure of agricultural products should be modified based on the characteristics of virtual water flow. For countries without high economic level but water shortage, export crops with high water consumption be reasonably controlled.

Suggested Citation

  • Xia, Wenjun & Chen, Xiaohong & Song, Chao & Pérez-Carrera, Alejo, 2022. "Driving factors of virtual water in international grain trade: A study for belt and road countries," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007186
    DOI: 10.1016/j.agwat.2021.107441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Head, Keith & Mayer, Thierry, 2014. "Gravity Equations: Workhorse,Toolkit, and Cookbook," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 131-195, Elsevier.
    2. Arellano, Manuel & Honore, Bo, 2001. "Panel data models: some recent developments," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296, Elsevier.
    3. de Soyres, François & Mulabdic, Alen & Murray, Siobhan & Rocha, Nadia & Ruta, Michele, 2019. "How much will the Belt and Road Initiative reduce trade costs?," International Economics, Elsevier, vol. 159(C), pages 151-164.
    4. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    5. Soloaga, Isidro & Alan Wintersb, L., 2001. "Regionalism in the nineties: what effect on trade?," The North American Journal of Economics and Finance, Elsevier, vol. 12(1), pages 1-29, March.
    6. Roberto Roson & Martina Sartori, 2010. "Water Scarcity and Virtual Water Trade in the Mediterranean," Working Papers 2010_08, Department of Economics, University of Venice "Ca' Foscari".
    7. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2018. "Factors driving embodied carbon in international trade: a multiregional input–output gravity model," Economic Systems Research, Taylor & Francis Journals, vol. 30(4), pages 545-566, October.
    8. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The effect of globalisation on water consumption: A case study of the Spanish virtual water trade, 1849–1935," Ecological Economics, Elsevier, vol. 100(C), pages 96-105.
    9. Alessandro Olper & Valentina Raimondi, 2009. "Patterns and Determinants of International Trade Costs in the Food Industry," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 273-297, June.
    10. James E. Anderson & Eric van Wincoop, 2003. "Gravity with Gravitas: A Solution to the Border Puzzle," American Economic Review, American Economic Association, vol. 93(1), pages 170-192, March.
    11. Song, Jianfeng & Yin, Yali & Xu, Hang & Wang, Yubao & Wu, Pute & Sun, Shikun, 2020. "Drivers of domestic grain virtual water flow: A study for China," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Bojana Bajželj & Keith S. Richards & Julian M. Allwood & Pete Smith & John S. Dennis & Elizabeth Curmi & Christopher A. Gilligan, 2014. "Importance of food-demand management for climate mitigation," Nature Climate Change, Nature, vol. 4(10), pages 924-929, October.
    13. Distefano, Tiziano & Kelly, Scott, 2017. "Are we in deep water? Water scarcity and its limits to economic growth," Ecological Economics, Elsevier, vol. 142(C), pages 130-147.
    14. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    15. Guan, Dabo & Hubacek, Klaus, 2007. "Assessment of regional trade and virtual water flows in China," Ecological Economics, Elsevier, vol. 61(1), pages 159-170, February.
    16. M. Kumar & O. Singh, 2005. "Virtual Water in Global Food and Water Policy Making: Is There a Need for Rethinking?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 759-789, December.
    17. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    18. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    19. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.
    20. Gopinath, G. & Helpman, . & Rogoff, K. (ed.), 2014. "Handbook of International Economics," Handbook of International Economics, Elsevier, edition 1, volume 4, number 4.
    21. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    22. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    23. Cheng Hsiao, 2007. "Rejoinder on: Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 56-57, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhipeng Wang & Ershen Zhang & Guojun Chen, 2023. "Spatiotemporal Variation and Influencing Factors of Grain Yield in Major Grain-Producing Counties: A Comparative Study of Two Provinces from China," Land, MDPI, vol. 12(9), pages 1-30, September.
    2. Meina Zhou & Junying Wang & Hao Ji, 2023. "Virtual Land and Water Flows and Driving Factors Related to Livestock Products Trade in China," Land, MDPI, vol. 12(8), pages 1-20, July.
    3. Xiuli Liu & Rui Xiong & Pibin Guo & Lei Nie & Qinqin Shi & Wentao Li & Jing Cui, 2022. "Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input–Output Model," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    4. Guo, Yaoqi & Zhao, Boya & Zhang, Hongwei, 2023. "The impact of the Belt and Road Initiative on the natural gas trade: A network structure dependence perspective," Energy, Elsevier, vol. 263(PD).
    5. Abdeslam Boudhar & Said Boudhar & Mohamed Oudgou & Aomar Ibourk, 2023. "Assessment of Virtual Water Flows in Morocco’s Foreign Trade of Crop Products," Resources, MDPI, vol. 12(4), pages 1-23, April.
    6. Tian, Qingsong & Yu, Yan & Xu, Yueyan & Li, Chongguang & Liu, Nianjie, 2023. "Patterns and driving factors of agricultural virtual water imports in China," Agricultural Water Management, Elsevier, vol. 281(C).
    7. Zhao, Guimei & Li, Wenxiu & Geng, Yong & Bleischwitz, Raimund, 2023. "Uncovering the features of global antimony resource trade network," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delbourg, Esther & Dinar, Shlomi, 2020. "The globalization of virtual water flows: Explaining trade patterns of a scarce resource," World Development, Elsevier, vol. 131(C).
    2. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    3. Fracasso, Andrea & Sartori, Martina & Schiavo, Stefano, 2014. "Determinants of virtual water flows in the Mediterranean," MPRA Paper 60500, University Library of Munich, Germany.
    4. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    5. Baier, Scott L. & Yotov, Yoto V. & Zylkin, Thomas, 2019. "On the widely differing effects of free trade agreements: Lessons from twenty years of trade integration," Journal of International Economics, Elsevier, vol. 116(C), pages 206-226.
    6. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.
    7. Martin Grančay & Nóra Grančay & Jana Drutarovská & Ladislav Mura, 2015. "Gravitačný model zahraničného obchodu českej a slovenskej republiky 1995-2012: ako sa zmenili determinanty obchodu? [Gravity Model of Trade of the Czech and Slovak Republics 1995-2012: How Have Det," Politická ekonomie, Prague University of Economics and Business, vol. 2015(6), pages 759-777.
    8. Scott L. Baier & Amanda Kerr & Yoto V. Yotov, 2018. "Gravity, distance, and international trade," Chapters, in: Bruce A. Blonigen & Wesley W. Wilson (ed.), Handbook of International Trade and Transportation, chapter 2, pages 15-78, Edward Elgar Publishing.
    9. Tian, Qingsong & Yu, Yan & Xu, Yueyan & Li, Chongguang & Liu, Nianjie, 2023. "Patterns and driving factors of agricultural virtual water imports in China," Agricultural Water Management, Elsevier, vol. 281(C).
    10. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Yang, Shanping & Martinez-Zarzoso, Inmaculada, 2014. "A panel data analysis of trade creation and trade diversion effects: The case of ASEAN–China Free Trade Area," China Economic Review, Elsevier, vol. 29(C), pages 138-151.
    12. Fontagné, Lionel & Martin, Philippe & Orefice, Gianluca, 2018. "The international elasticity puzzle is worse than you think," Journal of International Economics, Elsevier, vol. 115(C), pages 115-129.
    13. D'Ambrosio, Anna & Montresor, Sandro, 2017. "Migration and Trade Ows: New Evidence from Spanish Regions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201724, University of Turin.
    14. Agnosteva, Delina E. & Anderson, James E. & Yotov, Yoto V., 2019. "Intra-national trade costs: Assaying regional frictions," European Economic Review, Elsevier, vol. 112(C), pages 32-50.
    15. Lars Karlsson & Peter Hedberg, 2021. "War and trade in the peaceful century: the impact of interstate wars on bilateral trade flows during the first wave of globalization, 1830–1913," Economic History Review, Economic History Society, vol. 74(3), pages 809-830, August.
    16. Álvarez, Inmaculada C. & Barbero, Javier & Rodríguez-Pose, Andrés & Zofío, José L., 2018. "Does Institutional Quality Matter for Trade? Institutional Conditions in a Sectoral Trade Framework," World Development, Elsevier, vol. 103(C), pages 72-87.
    17. Harald Oberhofer & Michael Pfaffermayr & Yvonne Wolfmayr, 2021. "Die Auswirkungen des Brexit auf Österreichs Wirtschaft," WIFO Studies, WIFO, number 66782, Juni.
    18. Iliev, Dragomir & Stefanov, Galin & Yotov, Yoto, 2016. "Estimating Bulgaria’S Trade Borders With The Eu An Application Of The Empirical Gravity Model Of Trade," Business Management, D. A. Tsenov Academy of Economics, Svishtov, Bulgaria, issue 4, pages 1-3.
    19. Nazir Muhammad Abdullahi & Xuexi Huo & Qiangqiang Zhang & Aminah Bolanle Azeez, 2021. "Determinants and Potential of Agri-Food Trade Using the Stochastic Frontier Gravity Model: Empirical Evidence From Nigeria," SAGE Open, , vol. 11(4), pages 21582440211, December.
    20. Stacy Julius & Nnanna P. Azu & Maimuna Y. Muhammad, 2019. "Assessing the Impact of Terrorism in Trade Development in the SADC Region: A Gravity Model Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(10), pages 1147-1159, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.