IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v232y2020ics037837741931368x.html
   My bibliography  Save this article

Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer

Author

Listed:
  • Reyes, Julian
  • Elias, Emile
  • Haacker, Erin
  • Kremen, Amy
  • Parker, Lauren
  • Rottler, Caitlin

Abstract

Much of the agricultural production in the Ogallala Aquifer region relies on groundwater for irrigation. In addition to declining water levels, weather and climate-driven events affect crop yields and revenues. Crop insurance serves as a risk management tool to mitigate these perils. Here, we seek to understand what long-term crop insurance loss data can tell us about agricultural risk management in the Ogallala. We assess patterns and trends in crop insurance loss data from the U.S. Department of Agriculture Risk Management Agency. Indemnities, or insurance payments, totaled $22 billion from 1989–2017 for the 161 counties that overlie the Ogallala Aquifer. We focused on the top ten weather and climate-driven causes of crop loss for the Ogallala, which comprised at least 92% of total indemnities. Drought, hail, and heat were the leading causes of crop loss for the region, and varied over space and time. For example, drought is a significant cause of loss across all seasons, while hail is more prevalent in the spring and summer. Spatially heterogeneous patterns emerged showing larger hail indemnities in the northern Ogallala versus larger drought indemnities in the southern portion. We performed a Mann-Kendall trend analysis of county-level annual loss cost values (the ratio of indemnities to liabilities). Drought and excess moisture showed significant increasing loss cost trends in the western counties of the Ogallala. In contrast, hail showed significant decreasing trends in the northern and eastern portions. These results suggest the northern counties of the Ogallala may perceive hail as a greater risk, and may be better equipped to handle drought losses as compared with the southern Ogallala. Crop insurance loss data play a role in integrating long-term trends with near-term management practices, and providing relevant risk information in producers’ operational to tactical decision making processes.

Suggested Citation

  • Reyes, Julian & Elias, Emile & Haacker, Erin & Kremen, Amy & Parker, Lauren & Rottler, Caitlin, 2020. "Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer," Agricultural Water Management, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s037837741931368x
    DOI: 10.1016/j.agwat.2020.106000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741931368X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caitriana Steele & Julian Reyes & Emile Elias & Sierra Aney & Albert Rango, 2018. "Cascading impacts of climate change on southwestern US cropland agriculture," Climatic Change, Springer, vol. 148(3), pages 437-450, June.
    2. Crane-Droesch, Andrew & Marshall, Elizabeth & Rosch, Stephanie & Riddle, Anne & Cooper, Joseph & Wallander, Steven, 2019. "Climate Change and Agricultural Risk Management Into the 21st Century," Economic Research Report 292268, United States Department of Agriculture, Economic Research Service.
    3. Erica Kistner & Olivia Kellner & Jeffrey Andresen & Dennis Todey & Lois Wright Morton, 2018. "Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA," Climatic Change, Springer, vol. 146(1), pages 145-158, January.
    4. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    5. Adam Smith & Richard Katz, 2013. "US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 387-410, June.
    6. Alex Sherbinin, 2014. "Climate change hotspots mapping: what have we learned?," Climatic Change, Springer, vol. 123(1), pages 23-37, March.
    7. Roger Claassen & Christian Langpap & JunJie Wu, 2017. "Impacts of Federal Crop Insurance on Land Use and Environmental Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 592-613.
    8. Steward, David R. & Allen, Andrew J., 2016. "Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110," Agricultural Water Management, Elsevier, vol. 170(C), pages 36-48.
    9. Wallander, Steven & Aillery, Marcel & Hellerstein, Daniel & Hand, Michael S., 2013. "The Role of Conservation Programs in Drought Risk Adaptation," Economic Research Report 262224, United States Department of Agriculture, Economic Research Service.
    10. Emile Elias & Julian Reyes & Caiti Steele & Albert Rango, 2018. "Diverse landscapes, diverse risks: synthesis of the special issue on climate change and adaptive capacity in a hotter, drier Southwestern United States," Climatic Change, Springer, vol. 148(3), pages 339-353, June.
    11. Miguel A. Carriquiry & Daniel E. Osgood, 2012. "Index Insurance, Probabilistic Climate Forecasts, and Production," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 287-300, March.
    12. Wallander, Steven & Hellerstein, Daniel & Aillery, Marcel, 2013. "The Role of Conservation Program Design in Drought-Risk Adaptation," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 06, pages 1-1, July.
    13. Prokopy, Linda Stalker & Haigh, Tonya & Mase, Amber Saylor & Angel, Jim & Hart, Chad E. & Knutson, Cody & Lemos, Maria Carmen & Lo, Yun-Jia & McGuire, Jean & Morton, Lois Wright & Perron, Jennifer & T, 2013. "Agricultural Advisors: A Receptive Audience for Weather and Climate Information?," ISU General Staff Papers 201304010700001060, Iowa State University, Department of Economics.
    14. Coble, Keith H. & Heifner, Richard G. & Zuniga, Manuel, 2000. "Implications Of Crop Yield And Revenue Insurance For Producer Hedging," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-21, December.
    15. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    16. Roger Claassen & Christian Langpap & JunJie Wu, 2017. "Impacts of Federal Crop Insurance on Land Use and Environmental Quality," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 592-613, April.
    17. Haacker, Erin M.K. & Cotterman, Kayla A. & Smidt, Samuel J. & Kendall, Anthony D. & Hyndman, David W., 2019. "Effects of management areas, drought, and commodity prices on groundwater decline patterns across the High Plains Aquifer," Agricultural Water Management, Elsevier, vol. 218(C), pages 259-273.
    18. Kayla A. Cotterman & Anthony D. Kendall & Bruno Basso & David W. Hyndman, 2018. "Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer," Climatic Change, Springer, vol. 146(1), pages 187-200, January.
    19. Jean L. Steiner & David D. Briske & David P. Brown & Caitlin M. Rottler, 2018. "Vulnerability of Southern Plains agriculture to climate change," Climatic Change, Springer, vol. 146(1), pages 201-218, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Chongmei Zhang & Yan Guo & Dingde Xu, 2021. "Impact of Environmental and Health Risks on Rural Households’ Sustainable Livelihoods: Evidence from China," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    2. Youngho Kim, 2023. "Payments for Ecosystem Services Programs and Climate Change Adaptation in Agriculture," Economics Series Working Papers 1054, University of Oxford, Department of Economics.
    3. repec:ags:aaea22:335971 is not listed on IDEAS
    4. Nan Zhou & José L. Vilar-Zanón, 2024. "Impact Assessment of Climate Change on Hailstorm Risk in Spanish Wine Grape Crop Insurance: Insights from Linear and Quantile Regressions," Risks, MDPI, vol. 12(2), pages 1-23, January.
    5. Abby G. Frazier & Christian P. Giardina & Thomas W. Giambelluca & Laura Brewington & Yi-Leng Chen & Pao-Shin Chu & Lucas Berio Fortini & Danielle Hall & David A. Helweg & Victoria W. Keener & Ryan J. , 2022. "A Century of Drought in Hawaiʻi: Geospatial Analysis and Synthesis across Hydrological, Ecological, and Socioeconomic Scales," Sustainability, MDPI, vol. 14(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    3. Manning, Dale & Rad, Mani Rouhi & Ogle, Stephen, 2022. "Inferring the Supply of GHG Abatement from Agricultural Lands," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322539, Agricultural and Applied Economics Association.
    4. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," Economic Brief 327233, United States Department of Agriculture, Economic Research Service.
    5. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    6. Shebanina, Olena & Burkovska, Anna & Petrenko, Vadym & Burkovska, Alla, 2023. "Economic planning at agricultural enterprises: Ukrainian experience of increasing the availability of data in the context of food security," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    7. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    8. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    9. Che, Yuyuan & Rejesus, Roderick M. & Cavigelli, Michel A. & White, Kathryn E., 2022. "Long-Term Economic Impacts of No-Till Adoption," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322171, Agricultural and Applied Economics Association.
    10. Jianru Fu & Ruiyuan Shen & Chao Huang, 2023. "How does price insurance alleviate the fluctuation of agricultural product market? A dynamic analysis based on cobweb model," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(5), pages 202-211.
    11. Hellerstein, Daniel M., 2017. "The US Conservation Reserve Program: The evolution of an enrollment mechanism," Land Use Policy, Elsevier, vol. 63(C), pages 601-610.
    12. Mauro Vigani & Jonas Kathage, 2019. "To Risk or Not to Risk? Risk Management and Farm Productivity," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1432-1454, October.
    13. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    14. Ferreira, Marcelo D P & Feres, Jose, 2018. "The Role of Climate Risk on Land Allocation in Brazilian Amazon," 2018 Annual Meeting, August 5-7, Washington, D.C. 274436, Agricultural and Applied Economics Association.
    15. Lu, Xun & Che, Yuyuan & Rejesus, Roderick M. & Goodwin, Barry K. & Ghosh, Sujit K. & Paudel, Jayash, 2023. "Unintended environmental benefits of crop insurance: Nitrogen and phosphorus in water bodies," Ecological Economics, Elsevier, vol. 204(PA).
    16. repec:ags:aaea22:335468 is not listed on IDEAS
    17. Mark Brennan & Aditi Mehta & Justin Steil, 2022. "In Harm's Way? The Effect of Disasters on the Magnitude and Location of Low‐Income Housing Tax Credit Allocations," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(2), pages 486-514, March.
    18. repec:ags:aaea22:335920 is not listed on IDEAS
    19. Zhifeng Zhang & Haodong Xu & Shuangshuang Shan & Qingzhi Liu & Yuqi Lu, 2022. "Whether the Agricultural Insurance Policy Achieves Green Income Growth—Evidence from the Implementation of China’s Total Cost Insurance Pilot Program," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    20. Franzke, Christian L.E., 2021. "Towards the development of economic damage functions for weather and climate extremes," Ecological Economics, Elsevier, vol. 189(C).
    21. repec:ags:aaea22:335971 is not listed on IDEAS
    22. Yuqiang Gao & Yongkang Shu & Hongjie Cao & Shuting Zhou & Shaobin Shi, 2021. "Fiscal Policy Dilemma in Resolving Agricultural Risks: Evidence from China’s Agricultural Insurance Subsidy Pilot," IJERPH, MDPI, vol. 18(14), pages 1-11, July.
    23. Vigani, Mauro & Khafagy, Amr & Berry, Robert, 2024. "Public spending for agricultural risk management: Land use, regional welfare and intra-subsidy substitution," Food Policy, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s037837741931368x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.