IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp259-273.html
   My bibliography  Save this article

Effects of management areas, drought, and commodity prices on groundwater decline patterns across the High Plains Aquifer

Author

Listed:
  • Haacker, Erin M.K.
  • Cotterman, Kayla A.
  • Smidt, Samuel J.
  • Kendall, Anthony D.
  • Hyndman, David W.

Abstract

We use an 82-year record of water table data from the High Plains Aquifer to introduce a new application of segmented regression to hydrogeology, and evaluate the effects of droughts, crop prices, and local groundwater management on groundwater level trajectories. Across the High Plains, we find discernable regional cycles of faster and slower water table declines. A parsimonious Classification And Regression Tree (CART) analysis details correlations between select explanatory variables and changes in water table trajectories, quantified as changes in slope of well hydrographs. Drying relative to prior-year conditions is associated with negative changes in slope; in the absence of drying conditions, steep declines in commodity price are associated with positive changes in hydrograph slopes. Establishment of a groundwater management area is not a strong predictor for change in water table trajectories, but more wells tend to have negative changes in around the time of management areas are formation, suggesting that drought conditions are associated with both negative deflections in water table trajectory and enactment of management areas. Segmented regression is a promising tool for groundwater managers to evaluate change thresholds and the effectiveness of management strategies on groundwater storage and decline, using readily available water table data.

Suggested Citation

  • Haacker, Erin M.K. & Cotterman, Kayla A. & Smidt, Samuel J. & Kendall, Anthony D. & Hyndman, David W., 2019. "Effects of management areas, drought, and commodity prices on groundwater decline patterns across the High Plains Aquifer," Agricultural Water Management, Elsevier, vol. 218(C), pages 259-273.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:259-273
    DOI: 10.1016/j.agwat.2019.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418313015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    2. Clemente, Jesus & Montanes, Antonio & Reyes, Marcelo, 1998. "Testing for a unit root in variables with a double change in the mean," Economics Letters, Elsevier, vol. 59(2), pages 175-182, May.
    3. Matthew Sanderson & R. Frey, 2015. "Structural impediments to sustainable groundwater management in the High Plains Aquifer of western Kansas," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(3), pages 401-417, September.
    4. Steward, David R. & Allen, Andrew J., 2016. "Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110," Agricultural Water Management, Elsevier, vol. 170(C), pages 36-48.
    5. Michael Nieswiadomy, 1985. "The Demand for Irrigation Water in the High Plains of Texas, 1957–80," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(3), pages 619-626.
    6. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
    7. Drysdale, Krystal M. & Hendricks, Nathan P., 2018. "Adaptation to an irrigation water restriction imposed through local governance," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 150-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    2. Reyes, Julian & Elias, Emile & Haacker, Erin & Kremen, Amy & Parker, Lauren & Rottler, Caitlin, 2020. "Assessing agricultural risk management using historic crop insurance loss data over the ogallala aquifer," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Deines, Jillian M. & Schipanski, Meagan E. & Golden, Bill & Zipper, Samuel C. & Nozari, Soheil & Rottler, Caitlin & Guerrero, Bridget & Sharda, Vaishali, 2020. "Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chrigui Zouhair & Boujelbene Younes, 2009. "The Opportunities for Adopting Inflation Targeting in Tunisia: a Cointegration Study and Transmission Channels of Monetary Policy," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 16(3), pages 671-692, October.
    2. Montanes, Antonio & Olloqui, Irene & Calvo, Elena, 2005. "Selection of the break in the Perron-type tests," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 41-64.
    3. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    4. Kutuk, Yasin, 2022. "Inequality convergence: A world-systems theory approach," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 150-165.
    5. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    6. Garrod Brian & Almeida António & Machado Luiz, 2023. "Modelling of nonlinear asymmetric effects of changes in tourism on economic growth in an autonomous small-island economy," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 13(2), pages 154-172, December.
    7. Wilton Bernardino & João B. Amaral & Nelson L. Paes & Raydonal Ospina & José L. Távora, 2022. "A statistical investigation of a stock valuation model," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    8. Brittle, Shane, 2009. "Ricardian Equivalence and the Efficacy of Fiscal Policy in Australia," Economics Working Papers wp09-10, School of Economics, University of Wollongong, NSW, Australia.
    9. Abdullahi Alim & Peter R. Hartley & Yihui Lan, 2018. "Asian Spot Prices for LNG and other Energy Commodities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. repec:zbw:bofitp:urn:nbn:fi:bof-201505061169 is not listed on IDEAS
    11. Shahbaz, Muhammad, 2013. "Linkages between inflation, economic growth and terrorism in Pakistan," Economic Modelling, Elsevier, vol. 32(C), pages 496-506.
    12. Alvaro Pereira & João Jalles & Martin Andresen, 2012. "Structural change and foreign direct investment: globalization and regional economic integration," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 11(1), pages 35-82, April.
    13. Mesbah Fathy SHARAF, 2017. "Energy consumption and economic growth in Egypt: A disaggregated causality analysis with structural breaks," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 46, pages 59-76.
    14. Iorember, Paul Terhemba & Usman, Ojonugwa & Jelilov, Gylych, 2019. "Asymmetric Effects of Renewable Energy Consumption, Trade Openness and Economic Growth on Environmental Quality in Nigeria and South Africa," MPRA Paper 96333, University Library of Munich, Germany, revised 2019.
    15. repec:ebl:ecbull:v:3:y:2004:i:24:p:1-11 is not listed on IDEAS
    16. Johannes W. Fedderke, 2022. "Identifying steady‐state growth and inflation in the South African economy, 1960–2020," South African Journal of Economics, Economic Society of South Africa, vol. 90(3), pages 279-300, September.
    17. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    18. Aynur Pala, 2013. "Structural Breaks, Cointegration, and Causality by VECM Analysis of Crude Oil and Food Price," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 238-246.
    19. Cuddington, John T. & Ludema, Rodney & Jayasuriya, Shamila A, 2002. "Prebisch-Singer Redux," Working Papers 15857, United States International Trade Commission, Office of Economics.
    20. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    21. Antonio E. Noriega & Araceli Ramírez-Zamora, 1999. "Unit roots and multiple structural breaks in real output," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 14(2), pages 163-188.
    22. Josep Lluis Carrion Silvestre & Tomas del Barrio Castro & Enrique Lopez Bazo, 2002. "Level shifts in a panel data based unit root test. An application to the rate of unemployment," Working Papers in Economics 79, Universitat de Barcelona. Espai de Recerca en Economia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:259-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.