IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp289-302.html
   My bibliography  Save this article

A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification

Author

Listed:
  • Kropp, Ian
  • Nejadhashemi, A. Pouyan
  • Deb, Kalyanmoy
  • Abouali, Mohammad
  • Roy, Proteek C.
  • Adhikari, Umesh
  • Hoogenboom, Gerrit

Abstract

Sustainable intensification entails increasing the yield of existing agricultural lands while reducing the impact on the environment. Therefore, we sought to optimize irrigation and fertilizer scheduling on the farm level with respects to crop yield and environmental impact. Unlike traditional optimization, multi-objective optimization techniques provide a set of optimal solutions that collectively represent the tradeoffs between the conflicting objectives. As a result, decision makers can then prioritize and select their optimal trade-off from the global set of optimal solutions. To implement such an optimization platform, this study integrates the Unified Non-dominated Sorting Genetic Algorithm-III (U-NSGA-III) based multi-objective optimization platform with the Decision Support System for Agrotechnology Transfer crop model. The U-NSGA-III algorithm optimizes a farm level agricultural production system against a myriad of soil, crop, and climate objectives. With this platform, we were able to find irrigation and nitrogen schemes that reduced water usage by 48%, nitrogen usage by 26%, and nitrogen leaching by 51%.

Suggested Citation

  • Kropp, Ian & Nejadhashemi, A. Pouyan & Deb, Kalyanmoy & Abouali, Mohammad & Roy, Proteek C. & Adhikari, Umesh & Hoogenboom, Gerrit, 2019. "A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification," Agricultural Systems, Elsevier, vol. 173(C), pages 289-302.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:289-302
    DOI: 10.1016/j.agsy.2019.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1831268X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    2. Whittaker, Gerald & Färe, Rolf & Grosskopf, Shawna & Barnhart, Bradley & Bostian, Moriah & Mueller-Warrant, George & Griffith, Stephen, 2017. "Spatial targeting of agri-environmental policy using bilevel evolutionary optimization," Omega, Elsevier, vol. 66(PA), pages 15-27.
    3. parsinejad, Masoud & Yazdi, Amin Bemani & Araghinejad, Shahab & Nejadhashemi, A. Pouyan & Tabrizi, Mahdi Sarai, 2013. "Optimal water allocation in irrigation networks based on real time climatic data," Agricultural Water Management, Elsevier, vol. 117(C), pages 1-8.
    4. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Sampath, Rajan K., 1992. "Issues in irrigation pricing in developing countries," World Development, Elsevier, vol. 20(7), pages 967-977, July.
    7. R. González Perea & E. Camacho Poyato & P. Montesinos & J. A. Rodríguez Díaz, 2016. "Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2815-2830, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    2. Fanqi Zou & Tinghui Li, 2022. "The Impact of Agricultural Ecological Capital Investment on the Development of Green Circular Economy," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    3. Sarkar, Apurbo & Azim, Jony Abdul & Asif, Abdullah Al & Qian, Lu & Peau, Anamika Kor, 2021. "Structural equation modeling for indicators of sustainable agriculture: Prospective of a developing country’s agriculture," Land Use Policy, Elsevier, vol. 109(C).
    4. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    5. Anna Raschke & J. Sebastian Hernandez-Suarez & A. Pouyan Nejadhashemi & Kalyanmoy Deb, 2021. "Multidimensional Aspects of Sustainable Biofuel Feedstock Production," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    6. Soltani, A. & Alimagham, S.M. & Nehbandani, A. & Torabi, B. & Zeinali, E. & Dadrasi, A. & Zand, E. & Ghassemi, S. & Pourshirazi, S. & Alasti, O. & Hosseini, R.S. & Zahed, M. & Arabameri, R. & Mohammad, 2020. "SSM-iCrop2: A simple model for diverse crop species over large areas," Agricultural Systems, Elsevier, vol. 182(C).
    7. Wang, Yongqiang & Huang, Donghua & Sun, Kexin & Shen, Hongzheng & Xing, Xuguang & Liu, Xiao & Ma, Xiaoyi, 2023. "Multiobjective optimization of regional irrigation and nitrogen schedules by using the CERES-Maize model with crop parameters determined from the remotely sensed leaf area index," Agricultural Water Management, Elsevier, vol. 286(C).
    8. Hao Jin & Shuai Huang, 2021. "Are China’s Water Resources for Agriculture Sustainable? Evidence from Hubei Province," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    9. Chen, Yingshan & Li, Heng & Xu, Yaowen & Fu, Qiang & Wang, Yijia & He, Bing & Li, Mo, 2024. "Sustainable management in irrigation water distribution system under climate change: Process-driven optimization modelling considering water-food-energy-environment synergies," Agricultural Water Management, Elsevier, vol. 302(C).
    10. Karner, Katrin & Schmid, Erwin & Schneider, Uwe A. & Mitter, Hermine, 2021. "Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria," Ecological Economics, Elsevier, vol. 185(C).
    11. Wang, Yongqiang & Sun, Kexin & Gao, Yunhe & Liu, Ruizhe & Shen, Hongzheng & Xing, Xuguang & Ma, Xiaoyi, 2024. "Improving crop model accuracy in the development of regional irrigation and nitrogen schedules by using data assimilation and spatial clustering algorithms," Agricultural Water Management, Elsevier, vol. 291(C).
    12. Alary, Véronique & Messad, Samir & Aboul-Naga, Adel & Osman, Mona A. & H. Abdelsabour, Taha & Salah, Abdel-Aal E. & Juanes, Xavier, 2020. "Multi-criteria assessment of the sustainability of farming systems in the reclaimed desert lands of Egypt," Agricultural Systems, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew C. LaFevor & Alexandra G. Ponette-González & Rebecca Larson & Leah M. Mungai, 2021. "Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages," Land, MDPI, vol. 10(7), pages 1-17, July.
    2. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    3. Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.
    4. Budy P. Resosudarmo & Kimlong Chheng, 2021. "Irrigation inequality, rice farming productivity and food insecurity in rural Cambodia," Departmental Working Papers 2021-19, The Australian National University, Arndt-Corden Department of Economics.
    5. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    7. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    8. Evan F. Koenig, 1985. "Indirect Methods for Regulating Externalities Under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 100(2), pages 479-493.
    9. Wallace E. Oates, 1990. "Economics, Economists, and Environmental Policy," Eastern Economic Journal, Eastern Economic Association, vol. 16(4), pages 289-296, Oct-Dec.
    10. Dubois, Loick & Sahuc, Jean-Guillaume & Vermandel, Gauthier, 2025. "A general equilibrium approach to carbon permit banking," Journal of Environmental Economics and Management, Elsevier, vol. 129(C).
    11. Inés Macho-Stadler, 2008. "Environmental regulation: choice of instruments under imperfect compliance," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(1), pages 1-21, March.
    12. de la Croix, David & Gosseries, Axel, 2012. "The natalist bias of pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 271-287.
    13. Markus Reisinger & Ludwig Ressner, 2006. "The Choice of Prices vs. Quantities under Uncertainty," Working Papers 007, Bavarian Graduate Program in Economics (BGPE).
    14. Hahn Robert, 2010. "Designing Smarter Regulation with Improved Benefit-Cost Analysis," Journal of Benefit-Cost Analysis, De Gruyter, vol. 1(1), pages 1-19, July.
    15. Gao, Yanmei & Wang, Qi & Liu, Yang & He, Jie & Chen, Weiwei & Xing, Jun & Sun, Min & Gao, Zhiqiang & Wang, Zhimin & Zhang, Meng & Zhang, Yinghua, 2025. "Optimal water, nitrogen, and density management increased wheat yield by improving population uniformity," Agricultural Water Management, Elsevier, vol. 310(C).
    16. Don Fullerton & Gilbert E. Metcalf, 2002. "Environmental Controls, Scarcity Rents, and Pre-existing Distortions," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 26, pages 504-522, Edward Elgar Publishing.
    17. Shrestha, Ratna K., 2017. "Menus of price-quantity contracts for inducing the truth in environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 1-7.
    18. Espínola-Arredondo, Ana & Muñoz-García, Félix, 2013. "When does environmental regulation facilitate entry-deterring practices," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 133-152.
    19. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    20. Lawrence H. Goulder, 2013. "Markets for Pollution Allowances: What Are the (New) Lessons?," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 87-102, Winter.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:289-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.