IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v310y2025ics0378377425000769.html
   My bibliography  Save this article

Optimal water, nitrogen, and density management increased wheat yield by improving population uniformity

Author

Listed:
  • Gao, Yanmei
  • Wang, Qi
  • Liu, Yang
  • He, Jie
  • Chen, Weiwei
  • Xing, Jun
  • Sun, Min
  • Gao, Zhiqiang
  • Wang, Zhimin
  • Zhang, Meng
  • Zhang, Yinghua

Abstract

The ideal population type is the basis of high-yield and high-efficiency cultivation of wheat. Population uniformity is an important index to evaluate the population ideotype. Therefore, it is necessary to analyze the yield difference of winter wheat at different spike layers between different populations because spike layer affects the production function of population. Here, two 2-year field experiments were conducted to investigate the effects of irrigation times, nitrogen application rate, and planting density on wheat yield, population traits, sugar and dry matter accumulation, and photosynthetic parameters at different spike layers. The results indicated that optimal planting density (SD3), nitrogen (N2) and irrigation (W1 or W2) deceased the ineffective tillers number at flowering stage and improved the spike number at upper and middle spike layers, which leading to lower coefficient of variation (CV) and higher population uniformity. Increasing planting density, nitrogen, and irrigation promoted high grain yield and population-scale biomass accumulation mainly due to the increment of spike number and yield at upper and middle spike layers. But, the single-stem biomass and grain dry weight reduced with increased planting density whereas improved with an increase of nitrogen and irrigation. Increasing planting density, nitrogen, and irrigation improved the leaf area index (LAI) and light interception at the upper and middle canopy, but decreased it at the lower canopy. Furthermore, the chlorophyll content at flag leaf and penultimate leaf was higher than that of top third leaf. Thus, the single-stem and each organ biomass accumulation, and sugar content gradually decreased from the upper to the lower layers, leading to decreased grains number per spike and average grain weight. Increasing planting density decreased spike length, total soluble sugar content and dry matter accumulation of spike at different spike layers but improved these indicators in stem, which leading to decreases in grain number per spike; whereas these indicators improved with increased irrigation. Overall, these findings provided theoretical and practical basis for building ideal crop population, and breeding and cultivation of winter wheat with high yield.

Suggested Citation

  • Gao, Yanmei & Wang, Qi & Liu, Yang & He, Jie & Chen, Weiwei & Xing, Jun & Sun, Min & Gao, Zhiqiang & Wang, Zhimin & Zhang, Meng & Zhang, Yinghua, 2025. "Optimal water, nitrogen, and density management increased wheat yield by improving population uniformity," Agricultural Water Management, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000769
    DOI: 10.1016/j.agwat.2025.109362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Shang, Yunqiu & Wang, Sen & Lin, Xiang & Gu, Shubo & Wang, Dong, 2023. "Supplemental irrigation at jointing improves spike formation of wheat tillers by regulating sugar distribution in ear and stem," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Gao, Yanmei & Zhang, Meng & Yao, Chunsheng & Liu, Yuqing & Wang, Zhimin & Zhang, Yinghua, 2021. "Increasing seeding density under limited irrigation improves crop yield and water productivity of winter wheat by constructing a reasonable population architecture," Agricultural Water Management, Elsevier, vol. 253(C).
    4. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan & Qiang, Shengcai & Zhang, Guangxin & Sun, Min & Wen, Xiaoxia & Liao, Yuncheng & Gao, Zhiqiang, 2023. "Effects of ridge–furrow supplementary irrigation on water use efficiency and grain yield of winter wheat in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    3. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Mr. Emmanuel Momolu Pope & Prof. Wilson Opile & Dr. Lucas Ngode & Dr. Chepkoech Emmy, 2023. "Assessment of Upland Rice Production Constraints and Farmers’ Preferred Varieties in Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1307-1322, February.
    5. Samuthirapandi Subburaj & Thiyagarajan Thulasinathan & Viswabharathy Sakthivel & Bharathi Ayyenar & Rohit Kambale & Veera Ranjani Rajagopalan & Sudha Manickam & Raghu Rajasekaran & Gopalakrishnan Chel, 2024. "Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection," Agriculture, MDPI, vol. 14(5), pages 1-20, April.
    6. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    7. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    8. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    9. Klara Fischer & Giulia Vico & Helena Röcklinsberg & Hans Liljenström & Riccardo Bommarco, 2025. "Progress towards sustainable agriculture hampered by siloed scientific discourses," Nature Sustainability, Nature, vol. 8(1), pages 66-74, January.
    10. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    11. Francesco Zecca & Marco D'Errico, 2021. "Food security and land use: The Ethiopian case," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(2), pages 1-22.
    12. Catarina D. Melo & Cristiana S. A. M. Maduro Dias & Sophie Wallon & Alfredo E. S. Borba & João Madruga & Paulo A. V. Borges & Maria T. Ferreira & Rui B. Elias, 2022. "Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures," Agriculture, MDPI, vol. 12(3), pages 1-18, March.
    13. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    14. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    16. repec:plo:pone00:0203809 is not listed on IDEAS
    17. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    18. Nakayama, Tadanobu & Osako, Masahiro, 2023. "Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of macro- and micro-plastics for the whole of Japan," Ecological Modelling, Elsevier, vol. 476(C).
    19. Daryanto, Stefani & Fu, Bojie & Zhao, Wenwu & Wang, Shuai & Jacinthe, Pierre-André & Wang, Lixin, 2020. "Ecosystem service provision of grain legume and cereal intercropping in Africa," Agricultural Systems, Elsevier, vol. 178(C).
    20. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    21. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:310:y:2025:i:c:s0378377425000769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.