IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v165y2018icp164-176.html
   My bibliography  Save this article

Farm-level adaptation to climate change: The case of the Loam region in Belgium

Author

Listed:
  • de Frutos Cachorro, Julia
  • Gobin, Anne
  • Buysse, Jeroen

Abstract

Few studies have addressed the topic of farmers' adaptation to climate change from a multidisciplinary perspective, because of the difficulty in assessing their impacts. In view of the growing concern in the agricultural sector on this issue, we analyzed farm-level adaptation through arable land-use changes in the specific case of the Loam region in Belgium. With this aim, we used an agro-economic model which considered 20-year series of current and projected simulated yields with and without considering additional farming practices to reduce crop stress, such as irrigation and soil and water conservation techniques. Agronomic results show that climate change will negatively affect summer crop yields, particularly sugar beet and potatoes. However, we also show that adaptation to climate change through land-use changes can compensate for crop yield losses and lead to utility gains. These are obtained by reducing the share of land allocated to summer crops and barley and by increasing the surface allocated to less vulnerable crops such as winter wheat. Finally, irrigation practices would not be justified in the Loam region under climate change, since their use would incur important financial costs for farmers.

Suggested Citation

  • de Frutos Cachorro, Julia & Gobin, Anne & Buysse, Jeroen, 2018. "Farm-level adaptation to climate change: The case of the Loam region in Belgium," Agricultural Systems, Elsevier, vol. 165(C), pages 164-176.
  • Handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:164-176
    DOI: 10.1016/j.agsy.2018.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17305875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    2. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    3. Sébastien Foudi & Katrin Erdlenbruch, 2012. "The role of irrigation in farmers’ risk management strategies in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 39(3), pages 439-457, July.
    4. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    5. Mandryk, Maryia & Reidsma, Pytrik & van Ittersum, Martin K., 2017. "Crop and farm level adaptation under future climate challenges: An exploratory study considering multiple objectives for Flevoland, the Netherlands," Agricultural Systems, Elsevier, vol. 152(C), pages 154-164.
    6. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    7. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    8. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    9. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    10. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    11. John M. Antle & Claudio O. Stöckle, 2017. "Climate Impacts on Agriculture: Insights from Agronomic-Economic Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 299-318.
    12. Fernández, Francisco J. & Blanco, Maria, 2014. "Integration of biophysical and agro-economic models to assess the economic effects of climate change on agriculture: A review of global and EU regional approaches," Economics Discussion Papers 2014-48, Kiel Institute for the World Economy (IfW Kiel).
    13. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    14. Harrison, Matthew T. & Cullen, Brendan R. & Rawnsley, Richard P., 2016. "Modelling the sensitivity of agricultural systems to climate change and extreme climatic events," Agricultural Systems, Elsevier, vol. 148(C), pages 135-148.
    15. Harry M. Kaiser & Susan J. Riha & Daniel S. Wilks & David G. Rossiter & Radha Sampath, 1993. "A Farm-Level Analysis of Economic and Agronomic Impacts of Gradual Climate Warming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 387-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orduño Torres, Miguel Angel & Kallas, Zein & Ornelas Herrera, Selene Ivette, 2020. "Farmers’ environmental perceptions and preferences regarding climate change adaptation and mitigation actions; towards a sustainable agricultural system in México," Land Use Policy, Elsevier, vol. 99(C).
    2. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    3. Orduño, Miguel Angel & Kallas, Zein & Ornelas, Selene Ivette, 2021. "Climate Change Adaptation and Mitigation Actions Based on Farmers' Environmental Preferences and Perceptions. Sustainable Agriculture, Mexico," 2021 Conference, August 17-31, 2021, Virtual 314967, International Association of Agricultural Economists.
    4. Dimitris Tigkas & Harris Vangelis & George Tsakiris, 2020. "Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4329-4343, November.
    5. George Bilas & Nikolaos Karapetsas & Anne Gobin & Konstantinos Mesdanitis & Gergely Toth & Tamás Hermann & Yaosheng Wang & Liangguo Luo & Thomas M. Koutsos & Dimitrios Moshou & Thomas K. Alexandridis, 2022. "Land Suitability Analysis as a Tool for Evaluating Soil-Improving Cropping Systems," Land, MDPI, vol. 11(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    2. Diogo, V. & Reidsma, P. & Schaap, B. & Andree, B.P.J. & Koomen, E., 2017. "Assessing local and regional economic impacts of climatic extremes and feasibility of adaptation measures in Dutch arable farming systems," Agricultural Systems, Elsevier, vol. 157(C), pages 216-229.
    3. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    4. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    5. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    6. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    7. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    8. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    9. Kalaugher, Electra & Beukes, Pierre & Bornman, Janet F. & Clark, Anthony & Campbell, David I., 2017. "Modelling farm-level adaptation of temperate, pasture-based dairy farms to climate change," Agricultural Systems, Elsevier, vol. 153(C), pages 53-68.
    10. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    11. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    12. Zeyuan Qiu & Tony Prato, 2012. "Economic feasibility of adapting crop enterprises to future climate change: a case study of flexible scheduling and irrigation for representative farms in Flathead Valley, Montana, USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(3), pages 223-242, March.
    13. Sushenjit Bandyopadhyay & Limin Wang & Marcus Wijnen, 2011. "Improving Household Survey Instruments for Understanding Agricultural Household Adaptation to Climate Change : Water Stress and Variability," World Bank Publications - Reports 12764, The World Bank Group.
    14. Heleene Tambet & Yaniv Stopnitzky, 2021. "Climate Adaptation and Conservation Agriculture among Peruvian Farmers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 900-922, May.
    15. Xuan Liu & Jun Duan & G. Cornelis van Kooten, 2018. "The impact of changes in the AgriStability program on crop activities: A farm modeling approach," Agribusiness, John Wiley & Sons, Ltd., vol. 34(3), pages 650-667, June.
    16. Roberto D. Ponce Oliva & Esteban Arias Montevechio & Francisco Fernández Jorquera & Felipe Vásquez-Lavin & Alejandra Stehr, 2021. "Water Use and Climate Stressors in a Multiuser River Basin Setting: Who Benefits from Adaptation?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 897-915, February.
    17. Athanasios Petsakos & Stelios Rozakis, 2022. "Models and muddles: comment on ‘Calibration of agricultural risk programming models using positive mathematical programming’," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 713-728, July.
    18. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    19. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).

    More about this item

    Keywords

    Farmers' adaptation; Crop choices; Irrigation; Climate change; Agro-economic model;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:165:y:2018:i:c:p:164-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.