IDEAS home Printed from
   My bibliography  Save this article

A Manipulator Can Aid Prediction Market Accuracy




Prediction markets are low volume speculative markets whose prices offer informative forecasts on particular policy topics. Observers worry that traders may attempt to mislead decision makers by manipulating prices. We adapt a Kyle-style market microstructure model to this case, adding a manipulator with an additional quadratic preference regarding the price. In this model, when other traders are uncertain about the manipulator's target price, the mean target price has no effect on prices, and raising the variance of the target price can "increase" average price accuracy, by boosting the returns to informed trading and thereby incentives for traders to become informed. Copyright (c) The London School of Economics and Political Science 2008.

Suggested Citation

  • Robin Hanson & Ryan Oprea, 2009. "A Manipulator Can Aid Prediction Market Accuracy," Economica, London School of Economics and Political Science, vol. 76(302), pages 304-314, April.
  • Handle: RePEc:bla:econom:v:76:y:2009:i:302:p:304-314

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jan Hansen & Carsten Schmidt & Martin Strobel, 2004. "Manipulation in political stock markets - preconditions and evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 11(7), pages 459-463.
    2. Colin F. Camerer, 1998. "Can Asset Markets Be Manipulated? A Field Experiment with Racetrack Betting," Journal of Political Economy, University of Chicago Press, vol. 106(3), pages 457-482, June.
    3. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    4. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    5. Martin Spann & Bernd Skiera, 2003. "Internet-Based Virtual Stock Markets for Business Forecasting," Management Science, INFORMS, vol. 49(10), pages 1310-1326, October.
    6. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    7. Spiegel, Matthew & Subrahmanyam, Avanidhar, 1992. "Informed Speculation and Hedging in a Noncompetitive Securities Market," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 307-329.
    8. Hanson, Robin & Oprea, Ryan & Porter, David, 2006. "Information aggregation and manipulation in an experimental market," Journal of Economic Behavior & Organization, Elsevier, vol. 60(4), pages 449-459, August.
    9. Allen, Franklin & Gale, Douglas, 1992. "Stock-Price Manipulation," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 503-529.
    10. repec:spr:infosf:v:5:y:2003:i:1:d:10.1023_a:1022002107255 is not listed on IDEAS
    11. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    12. Albert S. Kyle, 1989. "Informed Speculation with Imperfect Competition," Review of Economic Studies, Oxford University Press, vol. 56(3), pages 317-355.
    13. Paul W. Rhode & Koleman S. Strumpf, 2004. "Historical Presidential Betting Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 127-141, Spring.
    14. Chakraborty, Archishman & Yilmaz, Bilge, 2004. "Manipulation in market order models," Journal of Financial Markets, Elsevier, vol. 7(2), pages 187-206, February.
    15. Colin Camerer, 1998. "Can asset markets be manipulated? A field experiment with racetrack betting," Natural Field Experiments 00222, The Field Experiments Website.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Snowberg, Erik & Wolfers, Justin & Zitzewitz, Eric, 2013. "Prediction Markets for Economic Forecasting," Handbook of Economic Forecasting, Elsevier.
    2. Veiga, Helena & Vorsatz, Marc, 2009. "Price manipulation in an experimental asset market," European Economic Review, Elsevier, vol. 53(3), pages 327-342, April.
    3. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    4. Reinstein, David & Song, Joon, 2014. "Listen to the Market, Hear the Best Policy Decision, but Don't Always Choose it," Economics Discussion Papers 10008, University of Essex, Department of Economics.
    5. Lionel Page & Robert T. Clemen, 2013. "Do Prediction Markets Produce Well‐Calibrated Probability Forecasts?-super-," Economic Journal, Royal Economic Society, vol. 123(568), pages 491-513, May.
    6. Siemroth, Christoph, 2014. "Why prediction markets work : the role of information acquisition and endogenous weighting," Working Papers 14-29, University of Mannheim, Department of Economics.
    7. Boleslavsky, Raphael & Kelly, David L. & Taylor, Curtis R., 2017. "Selloffs, bailouts, and feedback: Can asset markets inform policy?," Journal of Economic Theory, Elsevier, vol. 169(C), pages 294-343.
    8. repec:esx:essedp:748 is not listed on IDEAS
    9. Veiga, Helena & Vorsatz, Marc, 2008. "Aggregation and dissemination of information in experimental asset markets in the presence of a manipulator," DES - Working Papers. Statistics and Econometrics. WS ws084110, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Helena Veiga & Marc Vorsatz, 2010. "Information aggregation in experimental asset markets in the presence of a manipulator," Experimental Economics, Springer;Economic Science Association, vol. 13(4), pages 379-398, December.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:econom:v:76:y:2009:i:302:p:304-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.