IDEAS home Printed from https://ideas.repec.org/a/ags/wjagec/32148.html
   My bibliography  Save this article

Input Substitution In Irrigated Agriculture In The High Plains Of Texas, 1970-80

Author

Listed:
  • Nieswiadomy, Michael L.

Abstract

The adaptability of irrigated agriculture in the High Plains region of Texas in the 1970-80 period is analyzed by estimating Allen partial elasticities of substitution for five key inputs (water, labor, center pivot, furrow and wheel roll systems) used to produce two crops (cotton and grain sorghum). The results indicate that farmers have adapted to changes in a manner generally consistent with prior expectations concerning complementarity and substitutability among inputs. The output-constant price elasticities of water demand was statistically significant but relatively small (-25).

Suggested Citation

  • Nieswiadomy, Michael L., 1988. "Input Substitution In Irrigated Agriculture In The High Plains Of Texas, 1970-80," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 13(1), pages 1-8, July.
  • Handle: RePEc:ags:wjagec:32148
    DOI: 10.22004/ag.econ.32148
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/32148/files/13010063.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.32148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    2. Shumway, C. Richard & Chang, A. Anne, 1980. "Supply Response Of Texas Field Crops: An Evaluation Of The Cet Linear Supply Model," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 5(2), pages 1-16, December.
    3. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    4. Hirofumi Uzawa, 1962. "Production Functions with Constant Elasticities of Substitution," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(4), pages 291-299.
    5. Michael Nieswiadomy, 1985. "The Demand for Irrigation Water in the High Plains of Texas, 1957–80," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(3), pages 619-626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schuck, Eric C. & Green, Gareth P., 2002. "Farm Level Irrigation Technology Decisions Over Time," 2002 Annual meeting, July 28-31, Long Beach, CA 19632, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Garini, C.S. & Vanwindekens, F. & Scholberg, J.M.S. & Wezel, A. & Groot, J.C.J., 2017. "Drivers of adoption of agroecological practices for winegrowers and influence from policies in the province of Trento, Italy," Land Use Policy, Elsevier, vol. 68(C), pages 200-211.
    3. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo, 2021. "Explaining permanent and temporary water market trade patterns within local areas in the southern Murray–Darling Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 318-348, April.
    4. Julia Frutos Cachorro & Katrin Erdlenbruch & Mabel Tidball, 2019. "Sharing a Groundwater Resource in a Context of Regime Shifts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 913-940, April.
    5. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    6. Schuck, Eric C. & Green, Gareth P. & Sunding, David L., 2000. "Irrigation Water Rate Reform And Endogenous Technological Change," 2000 Annual Meeting, June 29-July 1, 2000, Vancouver, British Columbia 36463, Western Agricultural Economics Association.
    7. Edwards, Eric C. & Cristi, Oscar & Edwards, Gonzalo & Libecap, Gary D., 2018. "An illiquid market in the desert: estimating the cost of water trade restrictions in northern Chile," Environment and Development Economics, Cambridge University Press, vol. 23(6), pages 615-634, December.
    8. Green, Gareth P. & Sunding, David L., 1997. "Land Allocation, Soil Quality, And The Demand For Irrigation Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-9, December.
    9. Cai, Ximing & Ringler, Claudia & You, Jiing-Yun, 2008. "Substitution between water and other agricultural inputs: Implications for water conservation in a River Basin context," Ecological Economics, Elsevier, vol. 66(1), pages 38-50, May.
    10. Rosegrant, Mark W. & Schleyer, Renato Gazmuri & Yadav, Satya N., 1995. "Water policy for efficient agricultural diversification: market-based approaches," Food Policy, Elsevier, vol. 20(3), pages 203-223, June.
    11. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    12. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    13. Tareen, Irfan Y. & Gunter, Lewell F. & Bramblett, Jimmy & Wetzstein, Michael E., 2002. "Slippage In Forecasting Irrigation Water Demand: An Application To The Georgia Flint River Basin," 2002 Annual meeting, July 28-31, Long Beach, CA 19852, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Mullen, Jeffrey D. & Yu, Yingzhuo & Hoogenboom, Gerrit, 2009. "Estimating the demand for irrigation water in a humid climate: A case study from the southeastern United States," Agricultural Water Management, Elsevier, vol. 96(10), pages 1421-1428, October.
    15. Omezzine, Abdallah & Zaibet, Lokman, 1998. "Management of modern irrigation systems in oman: allocative vs. irrigation efficiency," Agricultural Water Management, Elsevier, vol. 37(2), pages 99-107, July.
    16. Vicente Ruiz, 2016. "Groundwater Overdraft, Electricity, and Wrong Incentives: Evidence from Mexico," Working Papers 2016.05, FAERE - French Association of Environmental and Resource Economists.
    17. Schuck, Eric C. & Frasier, W. Marshall & Ebel, Robert & Houk, Eric & Green, Gareth, 2011. "Retirement and Salinity Effects on Irrigation Technology Choices," Western Economics Forum, Western Agricultural Economics Association, vol. 10(1), pages 1-13.
    18. Ben Groom & Phoebe Koundouri & Celine Nauges & Alban Thomas, 2003. "Irrigation water management under risk: An application to Cyprus," DEOS Working Papers 0306, Athens University of Economics and Business.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Reynès, 2011. "The cobb-douglas function as an approximation of other functions," SciencePo Working papers Main hal-01069515, HAL.
    2. Brox, James A. & Fader, Christina, 1996. "Production elasticity differences between just-in-time and non-just-in-time users in the automotive parts industry," The North American Journal of Economics and Finance, Elsevier, vol. 7(1), pages 77-90.
    3. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
    4. Crompton, Paul & Lesourd, Jean-Baptiste, 2008. "Economies of scale in global iron-making," Resources Policy, Elsevier, vol. 33(2), pages 74-82, June.
    5. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    6. Al-Mutairi, Naief & Burney, Nadeem A., 2002. "Factor substitution, and economies of scale and utilisation in Kuwait's crude oil industry," Energy Economics, Elsevier, vol. 24(4), pages 337-354, July.
    7. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    8. Frédéric Reynès, 2011. "The cobb-douglas function as an approximation of other functions," Working Papers hal-01069515, HAL.
    9. Zhu, Shu & Xu, Xin & Ren, Xiaojing & Sun, Tianhua & Oxley, Les & Rae, Allan & Ma, Hengyun, 2016. "Modeling technological bias and factor input behavior in China's wheat production sector," Economic Modelling, Elsevier, vol. 53(C), pages 245-253.
    10. Alberto Behar, 2004. "Estimates of labour demand elasticities and elasticities of substitution using firm-level manufacturing data," SALDRU/CSSR Working Papers 098, Southern Africa Labour and Development Research Unit, University of Cape Town.
    11. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    12. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    13. Dirk Bursian & Arne J. Nagengast, 2020. "Offshoring And The Polarization Of The Demand For Capital," Economic Inquiry, Western Economic Association International, vol. 58(1), pages 260-282, January.
    14. W. Erwin Diewert, 2022. "Duality in Production," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 3, pages 57-168, Springer.
    15. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    16. Frédéric Reynés, 2019. "The Cobb-Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities," SciencePo Working papers Main hal-03403639, HAL.
    17. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09i29kgilc0 is not listed on IDEAS
    18. Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
    19. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
    20. Sajid Hussain & Uzma Nisar & Waseem Akram, 2020. "An Analysis of the Cost Structure of Food Industries in Pakistan: An Application of the Translog Cost Function," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 25(2), pages 1-22, July-Dec.
    21. repec:hal:spmain:info:hdl:2441/62drs526639gbqbrni9v9kvsv5 is not listed on IDEAS
    22. David Clive Broadstock, 2010. "Non-linear technological progress and the substitutability of energy for capital: An application using the translog cost function," Economics Bulletin, AccessEcon, vol. 30(1), pages 84-93.

    More about this item

    Keywords

    Farm Management;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:wjagec:32148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.