IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/313546.html
   My bibliography  Save this article

Adaptation responses to increasing drought frequency

Author

Listed:
  • Adamson, David
  • Loch, Adam
  • Schwabe, Kurt

Abstract

Using state contingent analysis, we discuss how and why irrigators adapt to alternative water supply signals. Focusing on the timing of water allocations, we explore inherent differences in the demand for water by two key irrigation sectors: annual and perennial producers. The analysis explores the reliability of alternative water property right bundles and how reduced allocations across time influence alternative responses by producers. Our findings are then extended to explore how management strategies could adapt to two possible future drier state types: (i) where an average reduction in water supply is experienced; and (ii) where drought becomes more frequent. The combination of these findings is subsequently used to discuss the role water reform policy plays in dealing with current and future climate scenarios.

Suggested Citation

  • Adamson, David & Loch, Adam & Schwabe, Kurt, 2017. "Adaptation responses to increasing drought frequency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), July.
  • Handle: RePEc:ags:aareaj:313546
    DOI: 10.22004/ag.econ.313546
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/313546/files/ajar12214.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.313546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Quiggin & Robert G. Chambers, 2006. "The state-contingent approach to production under uncertainty ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 153-169, June.
    2. David Adamson & Thilak Mallawaarachchi & John Quiggin, 2009. "Declining inflows and more frequent droughts in the Murray-Darling Basin: climate change, impacts and adaptation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 345-366, July.
    3. Anderson, Jock R., 1979. "Impacts of Climatic Variability in Australian Agriculture: A Review," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 47(03), pages 1-31, December.
    4. Svend Rasmussen, 2003. "Criteria for optimal production under uncertainty. The state‐contingent approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), pages 447-476, December.
    5. Wheeler, Sarah Ann & Bjornlund, Henning & Shanahan, Martin & Zuo, Alec, 2008. "Price elasticity of water allocations demand in the Goulburn–Murray Irrigation District," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(1), pages 1-19.
    6. Loch, Adam & Adamson, David & Mallawaarachchi, Thilak, 2013. "Hydrology and Economics in Water Management Policy under Increasing uncertainty," Risk and Sustainable Management Group Working Papers 156479, University of Queensland, School of Economics.
    7. Rulon D. Pope, 2003. "Agricultural Risk Analysis: Adequacy of Models, Data, and Issues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(5), pages 1249-1256.
    8. David J. Pannell, 2006. "Flat Earth Economics: The Far-reaching Consequences of Flat Payoff Functions in Economic Decision Making," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(4), pages 553-566.
    9. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448, September.
    10. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    11. Jean-Paul Chavas & Robert G. Chambers & Rulon D. Pope, 2010. "Production Economics and Farm Management: a Century of Contributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(2), pages 356-375.
    12. Schwabe, Kurt A. & Connor, Jeffery D., 2012. "Drought Issues in Semi-arid and Arid Environments," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 27(3), pages 1-5.
    13. Quiggin, John C. & Chambers, Robert G., 2004. "Drought policy: a graphical analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 1-27.
    14. Rothschild, Michael & Stiglitz, Joseph E., 1971. "Increasing risk II: Its economic consequences," Journal of Economic Theory, Elsevier, vol. 3(1), pages 66-84, March.
    15. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    16. Nguyen, Nam C. & Wegener, Malcolm K. & Russell, Iean W. & Cameron, Donald & Coventry, David & Cooper, Ian M., 2007. "Risk management strategies by Australian farmers: two case studies," AFBM Journal, Australasian Farm Business Management Network, vol. 4(1-2), pages 1-8.
    17. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    18. Amy Khuu & Ernst Juerg Weber, 2013. "How Australian farmers deal with risk," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 73(2), pages 345-357, July.
    19. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    20. Nauges, Celine & Wheeler, Sarah Ann & Zuo, Alec, 2016. "Elicitation of irrigators’ risk preferences from observed behaviour," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), July.
    21. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    22. Wheeler, Sarah Ann & Zuo, Alec & Loch, Adam, 2015. "Watering the farm: Comparing organic and conventional irrigation water use in the Murray–Darling Basin, Australia," Ecological Economics, Elsevier, vol. 112(C), pages 78-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mai, Thanh & Mushtaq, Shahbaz & Loch, Adam & Reardon-Smith, K. & An-Vo, Duc-Anh, 2019. "A systems thinking approach to water trade: Finding leverage for sustainable development," Land Use Policy, Elsevier, vol. 82(C), pages 595-608.
    2. Issahaku, Gazali & Abdulai, Awudu, 2020. "Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    3. David Adamson & Adam Loch, 2018. "Achieving environmental flows where buyback is constrained," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 83-102, January.
    4. Mekonnen, Dawit & Abate, Gashaw & Yimam, Seid, 2021. "Irrigation and Agricultural Transformation in Ethiopia," 2021 Conference, August 17-31, 2021, Virtual 315339, International Association of Agricultural Economists.
    5. Loch, Adam & Auricht , Christopher & Adamson, David & Mateo, Luis, 2020. "Markets, mis-direction and motives: A factual analysis of hoarding and speculation in southern Murray–Darling Basin water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(02), January.
    6. Bradley Franklin & Kurt Schwabe & Lucia Levers, 2021. "Perennial Crop Dynamics May Affect Long-Run Groundwater Levels," Land, MDPI, vol. 10(9), pages 1-18, September.
    7. Bigelow, Daniel P. & Zhang, Hongliang, 2018. "Supplemental irrigation water rights and climate change adaptation," Ecological Economics, Elsevier, vol. 154(C), pages 156-167.
    8. Delorit, Justin D. & Parker, Dominic P. & Block, Paul J., 2019. "An agro-economic approach to framing perennial farm-scale water resources demand management for water rights markets," Agricultural Water Management, Elsevier, vol. 218(C), pages 68-81.
    9. Levers, L.R. & Skaggs, T.H. & Schwabe, K.A., 2019. "Buying water for the environment: A hydro-economic analysis of Salton Sea inflows," Agricultural Water Management, Elsevier, vol. 213(C), pages 554-567.
    10. David A. Fleming‐Muñoz & Stuart Whitten & Graham D. Bonnett, 2023. "The economics of drought: A review of impacts and costs," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 501-523, October.
    11. Adam Loch & Christopher Auricht & David Adamson & Luis Mateo, 2021. "Markets, mis‐direction and motives: A factual analysis of hoarding and speculation in southern Murray–Darling Basin water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 291-317, April.
    12. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    2. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    3. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    4. Crean, Jason & Parton, Kevin & Mullen, John & Jones, Randall, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    5. Loch, Adam & Adamson, David & Mallawaarachchi, Thilak, 2013. "Hydrology and Economics in Water Management Policy under Increasing uncertainty," Risk and Sustainable Management Group Working Papers 156479, University of Queensland, School of Economics.
    6. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    7. Adamson, David & Loch, Adam, 2013. "Natural capital and climate change: Possible negative sustainability impacts from 'gold plating' irrigation infrastructure," Risk and Sustainable Management Group Working Papers 156480, University of Queensland, School of Economics.
    8. Adamson, David, 2010. "Climate change, Irrigation and Pests: Examining Heliothis in the Murray Darling Basin," Risk and Sustainable Management Group Working Papers 149879, University of Queensland, School of Economics.
    9. repec:bla:canjag:v:58:y:2010:i:s1:p:531-554 is not listed on IDEAS
    10. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    11. Mushtaq, Shahbaz & Cockfield, Geoff & White, Neil & Jakeman, Guy, 2014. "Modelling interactions between farm-level structural adjustment and a regional economy: A case of the Australian rice industry," Agricultural Systems, Elsevier, vol. 123(C), pages 34-42.
    12. repec:bla:canjag:v:58:y:2010:i:s1:p:403-409 is not listed on IDEAS
    13. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    14. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    15. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    16. John Quiggin & David Adamson & Sarah Chambers & Peggy Schrobback, 2010. "Climate Change, Uncertainty, and Adaptation: The Case of Irrigated Agriculture in the Murray–Darling Basin in Australia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(4), pages 531-554, December.
    17. Ejaz Qureshi, M. & Hanjra, Munir A. & Ward, John, 2013. "Impact of water scarcity in Australia on global food security in an era of climate change," Food Policy, Elsevier, vol. 38(C), pages 136-145.
    18. Adamson, David & Loch, Adam, 2018. "Achieving environmental flows where buyback is constrained," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    19. Quiggin, John C. & Chambers, Robert G., 2006. "The state-contingent approach to production under uncertainty," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 1-17, June.
    20. Carter, Chris & Crean, Jason & Kingwell, Ross S. & Hertzler, Greg, 2006. "Managing and Sharing the Risks of Drought in Australia," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25319, International Association of Agricultural Economists.
    21. Quiggin, John & Chambers, Robert G., 2005. "The state-contingent approach to production and uncertainty," Risk and Sustainable Management Group Working Papers 151168, University of Queensland, School of Economics.
    22. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:313546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.