IDEAS home Printed from https://ideas.repec.org/r/eee/resene/v39y2015icp68-88.html
   My bibliography  Save this item

A cross-country analysis of residential electricity demand in 11 OECD-countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vesterberg, Mattias, 2017. "The effect of price on electricity contract choice," Umeå Economic Studies 941, Umeå University, Department of Economics.
  2. Tarek Atalla & Simona Bigerna & Carlo Andrea Bollino, 2018. "Energy demand elasticities and weather worldwide," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(1), pages 207-237, April.
  3. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
  4. Fateh Belaid & Christophe Rault, 2020. "Energy Expenditure in Egypt: Empirical Evidence Based on A Quantile Regression Approach," Working Papers 1446, Economic Research Forum, revised 20 Dec 2020.
  5. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
  6. John Curtis & Brian Stanley, 2016. "Analysing Residential Energy Demand: An Error Correction Demand System Approach for Ireland," The Economic and Social Review, Economic and Social Studies, vol. 47(2), pages 185-211.
  7. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  8. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
  9. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
  10. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
  11. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
  12. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
  13. Lundgren, Berndt & Schultzberg, Mårten, 2019. "Application of the economic theory of self-control to model energy conservation behavioral change in households," Energy, Elsevier, vol. 183(C), pages 536-546.
  14. Isabel Azevedo & Vítor Leal, 2021. "Decomposition Analysis of the Evolution of the Local Energy System as a Tool to Assess the Effect of Local Actions: Methodology and Example of Malmö, Sweden," Energies, MDPI, vol. 14(2), pages 1-21, January.
  15. Brännlund, Runar & Vesterberg, Mattias, 2021. "Peak and off-peak demand for electricity: Is there a potential for load shifting?," Energy Economics, Elsevier, vol. 102(C).
  16. Hyo-Jin Kim & Gyeong-Sam Kim & Seung-Hoon Yoo, 2019. "Demand Function for Industrial Electricity: Evidence from South Korean Manufacturing Sector," Sustainability, MDPI, vol. 11(18), pages 1-11, September.
  17. Feehan, James P., 2018. "The long-run price elasticity of residential demand for electricity: Results from a natural experiment," Utilities Policy, Elsevier, vol. 51(C), pages 12-17.
  18. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
  19. Milstein, Irena & Tishler, Asher, 2019. "On the effects of capacity payments in competitive electricity markets: Capacity adequacy, price cap, and reliability," Energy Policy, Elsevier, vol. 129(C), pages 370-385.
  20. Su, Yu-Wen, 2019. "Residential electricity demand in Taiwan: Consumption behavior and rebound effect," Energy Policy, Elsevier, vol. 124(C), pages 36-45.
  21. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
  22. Loi, Tian Sheng Allan & Loo, Soh Leng, 2016. "The impact of Singapore’s residential electricity conservation efforts and the way forward. Insights from the bounds testing approach," Energy Policy, Elsevier, vol. 98(C), pages 735-743.
  23. Chesser, Michael & Hanly, Jim & Cassells, Damien & Apergis, Nicholas, 2018. "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, Elsevier, vol. 122(C), pages 36-44.
  24. Lanot, Gauthier & Vesterberg, Mattias, 2021. "The price elasticity of electricity demand when marginal incentives are very large," Energy Economics, Elsevier, vol. 104(C).
  25. Hyo-Jin Kim & Jae-Sung Paek & Seung-Hoon Yoo, 2019. "Price Elasticity of Heat Demand in South Korean Manufacturing Sector: An Empirical Investigation," Sustainability, MDPI, vol. 11(21), pages 1-10, November.
  26. Krasovskii, Andrey & Khabarov, Nikolay & Obersteiner, Michael, 2016. "Fair pricing of REDD-based emission offsets under risk preferences and benefit-sharing," Energy Policy, Elsevier, vol. 96(C), pages 193-205.
  27. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
  28. Adom, Philip Kofi, 2016. "Electricity Supply and System losses in Ghana. What is the red line? Have we crossed over?," MPRA Paper 74559, University Library of Munich, Germany, revised 11 Nov 2016.
  29. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
  30. Randazzo, Teresa & De Cian, Enrica & Mistry, Malcolm N., 2020. "Air conditioning and electricity expenditure: The role of climate in temperate countries," Economic Modelling, Elsevier, vol. 90(C), pages 273-287.
  31. Adom, Philip Kofi, 2017. "The long-run price sensitivity dynamics of industrial and residential electricity demand: The impact of deregulating electricity prices," Energy Economics, Elsevier, vol. 62(C), pages 43-60.
  32. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan, 2019. "Heterogeneity in the price response of residential electricity demand: A dynamic approach for Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 119-134.
  33. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  34. Vesterberg, Mattias, 2017. "Heterogeneity in price responsiveness of electricity: Contract choice and the role of media coverage," Umeå Economic Studies 940, Umeå University, Department of Economics.
  35. Enrica De Cian & Filippo Pavanello & Teresa Randazzo & Malcolm Mistry & Marinella Davide, 2019. "Does climate influence households' thermal comfort decisions?," Working Papers 2019:02, Department of Economics, University of Venice "Ca' Foscari".
  36. Heindl Peter & Aigeltinger Gerd & Liessem Verena & Römer Daniel & Schwengers Clarita & Vogt Claire, 2017. "Zum Stromkonsum von Haushalten in Grundsicherung: Eine empirische Analyse für Deutschland," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(4), pages 348-367, November.
  37. Vesterberg, Mattias, 2018. "The effect of price on electricity contract choice," Energy Economics, Elsevier, vol. 69(C), pages 59-70.
  38. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Carlo A. Bollino & Ceyhun Mahmudlu, 2017. "Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach," Energies, MDPI, vol. 10(11), pages 1-12, November.
  39. Neidell, Matthew & Uchida, Shinsuke & Veronesi, Marcella, 2021. "The unintended effects from halting nuclear power production: Evidence from Fukushima Daiichi accident," Journal of Health Economics, Elsevier, vol. 79(C).
  40. Lanot, Gauthier & Vesterberg, Mattias, 2017. "An empirical model of the decision to switch between electricity price contracts," Umeå Economic Studies 951, Umeå University, Department of Economics.
  41. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
  42. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
  43. Jens Ewald & Thomas Sterner & Eoin Ó Broin & Érika Mata, 2021. "Saving energy in residential buildings: the role of energy pricing," Climatic Change, Springer, vol. 167(1), pages 1-20, July.
  44. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
  45. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
  46. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.