IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v19y1991i5p429-445.html
   My bibliography  Save this item

Neural network models and the prediction of bank bankruptcy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Adam Fadlalla & Chien-Hua Lin, 2001. "An Analysis of the Applications of Neural Networks in Finance," Interfaces, INFORMS, vol. 31(4), pages 112-122, August.
  2. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
  3. repec:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9623-y is not listed on IDEAS
  4. Younes Boujelb`ene & Sihem Khemakhem, 2013. "Pr\'evision du risque de cr\'edit : Une \'etude comparative entre l'Analyse Discriminante et l'Approche Neuronale," Papers 1311.4266, arXiv.org.
  5. repec:gam:jsusta:v:10:y:2018:i:7:p:2346-:d:156535 is not listed on IDEAS
  6. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
  7. Федорова Е.А. & Гиленко Е.В., 2013. "Применение Моделей Бинарного Выбора Для Прогнозирования Банкротства Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 49(1), pages 106-118, январь.
  8. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
  9. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
  10. Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 8(3), pages 1-18, August.
  11. Samir Trabelsi & Roc He & Lawrence He & Martin Kusy, 2015. "A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction," Computational Management Science, Springer, vol. 12(1), pages 81-97, January.
  12. Davalos, Sergio & Gritta, Richard D. & Adrangi, Bahram, 2007. "Deriving Rules for Forecasting Air Carrier Financial Stress and Insolvency: A Genetic Algorithm Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(2), pages 1-20.
  13. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
  14. Younes Boujelbène & Sihem Khemakhem, 2013. "Prévision du risque de crédit : Une étude comparative entre l'Analyse Discriminante et l'Approche Neuronale," Working Papers hal-00905199, HAL.
  15. Adrian Gepp & Kuldeep Kumar & Sukanto Bhattacharya, 2010. "Business failure prediction using decision trees," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 536-555.
  16. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium-sized enterprises: An empirical analysis," Management Research Review, Emerald Group Publishing, vol. 35(8), pages 727-749, July.
  17. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY -NOW- Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY.
  18. Fang, Xiao & Rachamadugu, Ram, 2009. "Policies for knowledge refreshing in databases," Omega, Elsevier, vol. 37(1), pages 16-28, February.
  19. Carlos Serrano-Cinca & Yolanda Fuertes-Callén & Begoña Gutiérrez-Nieto & Beatriz Cuellar-Fernández, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
  20. Indro, D. C. & Jiang, C. X. & Patuwo, B. E. & Zhang, G. P., 1999. "Predicting mutual fund performance using artificial neural networks," Omega, Elsevier, vol. 27(3), pages 373-380, June.
  21. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
  22. repec:eee:jocaae:v:10:y:2014:i:3:p:277-295 is not listed on IDEAS
  23. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
  24. Sohn, So Young & Kim, Hong Sik, 2007. "Random effects logistic regression model for default prediction of technology credit guarantee fund," European Journal of Operational Research, Elsevier, vol. 183(1), pages 472-478, November.
  25. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
  26. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
  27. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
  28. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
  29. Nikola Milosevic, 2016. "Equity forecast: Predicting long term stock price movement using machine learning," Papers 1603.00751, arXiv.org, revised Nov 2018.
  30. Zuleyca Díaz Martínez & José Fernández Menéndez & María Jesús Segovia Vargas, 2004. "See5 Algorithm versus Discriminant Analysis. An Application to the Prediction of Insolvency in Spanish Non-life Insurance Companies," Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales 04-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales.
  31. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
  32. Gruca, TS & Klemz, BR, 1998. "Using Neural Networks to Identify Competitive Market Structures from Aggregate Market Response Data," Omega, Elsevier, vol. 26(1), pages 49-62, February.
  33. repec:eee:spacre:v:15:y:2012:i:1:p:7-58 is not listed on IDEAS
  34. Premachandra, I.M. & Chen, Yao & Watson, John, 2011. "DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment," Omega, Elsevier, vol. 39(6), pages 620-626, December.
  35. repec:eee:ijoais:v:12:y:2011:i:2:p:152-160 is not listed on IDEAS
  36. Ioannidis, Christos & Pasiouras, Fotios & Zopounidis, Constantin, 2010. "Assessing bank soundness with classification techniques," Omega, Elsevier, vol. 38(5), pages 345-357, October.
  37. Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
  38. Halil Erdal & Aykut Ekinci, 2013. "A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 199-215, August.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.