IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v42y2013i2p199-215.html
   My bibliography  Save this article

A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures

Author

Listed:
  • Halil Erdal
  • Aykut Ekinci

Abstract

The strong relationship between bank failure and economic growth attaches far more importance to the predictability of bank failures. Consequently, numerous statistical prediction models exist in the literature focusing on this particular subject. Besides, artificial intelligence techniques began to attain an increasing level of importance in the literature due to their predictive success. This study distinguishes itself from the similar ones in the sense that it presents a comparison of three different artificial intelligence methods, namely support vector machines (SVMs), radial basis function neural network (RBF-NN) and multilayer perceptrons (MLPs); in addition to subjecting the explanatory variables to principal component analysis (PCA). The extent of this study encompasses 37 privately owned commercial banks (17 failed, 20 non-failed) that were operating in Turkey for the period of 1997–2001. The main conclusions drawn from the study can be summarized as follows: (i) PCA does not appear to be an effective method with respect to the improvement of predictive power; (ii) SVMs and RBF demonstrated similar levels of predictive power; albeit SVMs was found to be the best model in terms of total predictive power; (iii) MLPs method stood out among the SVMs and RBF methods in a negative sense and exhibits the lowest predictive power. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Halil Erdal & Aykut Ekinci, 2013. "A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 199-215, August.
  • Handle: RePEc:kap:compec:v:42:y:2013:i:2:p:199-215
    DOI: 10.1007/s10614-012-9332-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-012-9332-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-012-9332-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinkey, Joseph F, Jr, 1975. "A Multivariate Statistical Analysis of the Characteristics of Problem Banks," Journal of Finance, American Finance Association, vol. 30(1), pages 21-36, March.
    2. Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
    3. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    4. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    5. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    6. Olmeda, Ignacio & Fernandez, Eugenio, 1997. "Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 10(4), pages 317-335, November.
    7. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    8. West, Robert Craig, 1985. "A factor-analytic approach to bank condition," Journal of Banking & Finance, Elsevier, vol. 9(2), pages 253-266, June.
    9. Meyer, Paul A & Pifer, Howard W, 1970. "Prediction of Bank Failures," Journal of Finance, American Finance Association, vol. 25(4), pages 853-868, September.
    10. Canbas, Serpil & Cabuk, Altan & Kilic, Suleyman Bilgin, 2005. "Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case," European Journal of Operational Research, Elsevier, vol. 166(2), pages 528-546, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
    2. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    3. Weiwei Liu & Zhile Yang & Kexin Bi, 2017. "Forecasting the Acquisition of University Spin-Outs: An RBF Neural Network Approach," Complexity, Hindawi, vol. 2017, pages 1-8, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aykut Ekinci & Halil İbrahim Erdal, 2017. "Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 677-686, April.
    2. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    3. Parnes, Dror & Gormus, Alper, 2024. "Prescreening bank failures with K-means clustering: Pros and cons," International Review of Financial Analysis, Elsevier, vol. 93(C).
    4. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    5. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    6. Zhiyong Li & Chen Feng & Ying Tang, 2022. "Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis," Annals of Operations Research, Springer, vol. 315(1), pages 279-315, August.
    7. Maiya Anokhina & Henry Penikas & Victor Petrov, 2014. "Identifying SIFI Determinants for Global Banks and Insurance Companies: Implications for D-SIFIs in Russia," DEM Working Papers Series 085, University of Pavia, Department of Economics and Management.
    8. Theophilos Papadimitriou & Periklis Gogas & Anna Agrapetidou, 2022. "The resilience of the U.S. banking system," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2819-2835, July.
    9. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    10. Demyanyk, Yuliya & Hasan, Iftekhar, 2009. "Financial crises and bank failures: a review of prediction methods," Bank of Finland Research Discussion Papers 35/2009, Bank of Finland.
    11. Papanikolaou, Nikolaos I., 2018. "To be bailed out or to be left to fail? A dynamic competing risks hazard analysis," Journal of Financial Stability, Elsevier, vol. 34(C), pages 61-85.
    12. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    13. Fiordelisi, Franco & Mare, Davide Salvatore, 2013. "Probability of default and efficiency in cooperative banking," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 30-45.
    14. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
    15. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    16. Li Xian Liu & Shuangzhe Liu & Milind Sathye, 2021. "Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    17. Thomas B. King & Daniel A. Nuxoll & Timothy J. Yeager, 2006. "Are the causes of bank distress changing? can researchers keep up?," Review, Federal Reserve Bank of St. Louis, vol. 88(Jan), pages 57-80.
    18. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    19. Jos� Eduardo Gómez-González, 2012. "Failing and Merging as Competing Alternatives during Times of Financial Distress: Evidence from the Colombian Financial Crisis," International Economic Journal, Taylor & Francis Journals, vol. 26(4), pages 655-671, October.
    20. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    21. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:42:y:2013:i:2:p:199-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.