IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment

  • Premachandra, I.M.
  • Chen, Yao
  • Watson, John

Using an additive super-efficiency data envelopment analysis (DEA) model, this paper develops a new assessment index based on two frontiers for predicting corporate failure and success. The proposed approach is applied to a random sample of 1001 firms, which is composed of 50 large US bankrupt firms randomly selected from Altman's bankruptcy database and 901 healthy matching firms. This sample represents the largest firms that went bankrupt over the period 1991-2004 and represents a full spectrum of industries. Our findings demonstrate that the DEA model is relatively weak in predicting corporate failures compared to healthy firm predictions, and the assessment index improves this weakness by giving the decision maker various options to achieve different precision levels of bankrupt, non-bankrupt, and total predictions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC4-520M21M-2/2/e8878dba67c55034511f0b4ddad82145
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Omega.

Volume (Year): 39 (2011)
Issue (Month): 6 (December)
Pages: 620-626

as
in new window

Handle: RePEc:eee:jomega:v:39:y:2011:i:6:p:620-626
Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description

Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=375&ref=375_01_ooc_1&version=01

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, 09.
  2. Kahya, Emel & Theodossiou, Panayiotis, 1999. " Predicting Corporate Financial Distress: A Time-Series CUSUM Methodology," Review of Quantitative Finance and Accounting, Springer, vol. 13(4), pages 323-45, December.
  3. Yuliya Demyanyk & Iftekhar Hasan, 2009. "Financial crises and bank failures: a review of prediction methods," Working Paper 0904, Federal Reserve Bank of Cleveland.
  4. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
  5. Molinero, C Mar & Ezzamel, M, 1991. "Multidimensional scaling applied to corporate failure," Omega, Elsevier, vol. 19(4), pages 259-274.
  6. Warner, Jerold B, 1977. "Bankruptcy Costs: Some Evidence," Journal of Finance, American Finance Association, vol. 32(2), pages 337-47, May.
  7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  8. Altman, Edward I, 1984. " A Further Empirical Investigation of the Bankruptcy Cost Question," Journal of Finance, American Finance Association, vol. 39(4), pages 1067-89, September.
  9. Collins, Robert A. & Green, Richard D., 1982. "Statistical methods for bankruptcy forecasting," Journal of Economics and Business, Elsevier, vol. 34(4), pages 349-354.
  10. Charnes, A. & Cooper, W. W. & Seiford, L. & Stutz, J., 1982. "A multiplicative model for efficiency analysis," Socio-Economic Planning Sciences, Elsevier, vol. 16(5), pages 223-224.
  11. Avkiran, Necmi K., 2011. "Association of DEA super-efficiency estimates with financial ratios: Investigating the case for Chinese banks," Omega, Elsevier, vol. 39(3), pages 323-334, June.
  12. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
  13. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
  14. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
  15. Shanmugam, Ramalingam & Johnson, Charles, 2007. "At a crossroad of data envelopment and principal component analyses," Omega, Elsevier, vol. 35(4), pages 351-364, August.
  16. Cielen, Anja & Peeters, Ludo & Vanhoof, Koen, 2004. "Bankruptcy prediction using a data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 526-532, April.
  17. Du, Juan & Liang, Liang & Zhu, Joe, 2010. "A slacks-based measure of super-efficiency in data envelopment analysis: A comment," European Journal of Operational Research, Elsevier, vol. 204(3), pages 694-697, August.
  18. Kao, Chiang & Liu, Shiang-Tai, 2004. "Predicting bank performance with financial forecasts: A case of Taiwan commercial banks," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2353-2368, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:39:y:2011:i:6:p:620-626. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.