IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v26y2004i2p179-200.html
   My bibliography  Save this item

Household electricity end-use consumption: results from econometric and engineering models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, "undated". "Microsimulating the Effects of Household Energy Price Changes in Spain," Studies on the Spanish Economy 196, FEDEA.
  2. Kurt KRATENA & Ina MEYER & Michael WUEGER, 2008. "Modelling the Energy Demand of Households in a Combined Top Down/Bottom Up Approach," EcoMod2008 23800069, EcoMod.
  3. Yilmaz, S. & Majcen, D. & Heidari, M. & Mahmoodi, J. & Brosch, T. & Patel, M.K., 2019. "Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland," Applied Energy, Elsevier, vol. 239(C), pages 117-132.
  4. Rosas-Flores, Jorge Alberto & Morillón Gálvez, David & Fernández Zayas, José Luís, 2010. "Inequality in the distribution of expense allocated to the main energy fuels for Mexican households: 1968-2006," Energy Economics, Elsevier, vol. 32(5), pages 960-966, September.
  5. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
  6. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).
  7. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2017. "Heterogeneity in residential electricity consumption: A quantile regression approach," Ruhr Economic Papers 722, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  8. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
  9. Soo-Jin Lee & You-Jeong Kim & Hye-Sun Jin & Sung-Im Kim & Soo-Yeon Ha & Seung-Yeong Song, 2019. "Residential End-Use Energy Estimation Models in Korean Apartment Units through Multiple Regression Analysis," Energies, MDPI, vol. 12(12), pages 1-18, June.
  10. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
  11. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
  12. Hanne Marit Dalen and Bodil M. Larsen, 2015. "Residential End-use Electricity Demand: Development over Time," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  13. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  14. Michael Chesser & Jim Hanly & Damien Cassells & Nikolaos Apergis, 2019. "Household Energy Consumption: A Study of Micro Renewable Energy Systems in Ireland," The Economic and Social Review, Economic and Social Studies, vol. 50(2), pages 265-280.
  15. Newsham, Guy R. & Donnelly, Cara L., 2013. "A model of residential energy end-use in Canada: Using conditional demand analysis to suggest policy options for community energy planners," Energy Policy, Elsevier, vol. 59(C), pages 133-142.
  16. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2012. "Estimation of elasticity price of electricity with incomplete information," Energy Economics, Elsevier, vol. 34(3), pages 627-633.
  17. Tovar, Miguel A., 2012. "The structure of energy efficiency investment in the UK households and its average monetary and environmental savings," Energy Policy, Elsevier, vol. 50(C), pages 723-735.
  18. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
  19. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
  20. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
  21. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
  22. Bente Halvorsen & Bodil Merethe Larsen, 2013. "How do investments in heat pumps affect household energy consumption?," Discussion Papers 737, Statistics Norway, Research Department.
  23. Qudrat-Ullah, Hassan, 2014. "Green power in Ontario: A dynamic model-based analysis," Energy, Elsevier, vol. 77(C), pages 859-870.
  24. Pereira Uhr, Daniel de Abreu & Squarize Chagas, André Luis & Ziero Uhr, Júlia Gallego, 2019. "Estimation of elasticities for electricity demand in Brazilian households and policy implications," Energy Policy, Elsevier, vol. 129(C), pages 69-79.
  25. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  26. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  27. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
  28. Sana Bashir & Iftikhar Ahmad & Sajid Rashid Ahmad, 2018. "Low-Emission Modeling for Energy Demand in the Household Sector: A Study of Pakistan as a Developing Economy," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
  29. Kurt Kratena & Michael Wüger, 2008. "Combining a Demand System with the Household Production Approach. Modelling Energy Demand in Selected European Countries," WIFO Working Papers 311, WIFO.
  30. Cialani, Catia & Mortazavi, Reza, 2018. "Household and industrial electricity demand in Europe," Energy Policy, Elsevier, vol. 122(C), pages 592-600.
  31. Chong, Howard, 2012. "Building vintage and electricity use: Old homes use less electricity in hot weather," European Economic Review, Elsevier, vol. 56(5), pages 906-930.
  32. Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
  33. Jia, Jun-Jun & Ni, Jinlan & Wei, Chu, 2023. "Residential responses to service-specific electricity demand: Case of China," China Economic Review, Elsevier, vol. 78(C).
  34. Rosas-Flores, Jorge Alberto, 2017. "Elements for the development of public policies in the residential sector of Mexico based in the Energy Reform and the Energy Transition law," Energy Policy, Elsevier, vol. 104(C), pages 253-264.
  35. Frondel, Manuel & Sommer, Stephan & Vance, Colin, 2019. "Heterogeneity in German Residential Electricity Consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 131(C), pages 370-379.
  36. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  37. Shiraki, Hiroto & Nakamura, Shogo & Ashina, Shuichi & Honjo, Keita, 2016. "Estimating the hourly electricity profile of Japanese households – Coupling of engineering and statistical methods," Energy, Elsevier, vol. 114(C), pages 478-491.
  38. Frontuto Vito, 2012. "Residential Energy Demand: a Multiple Discrete-Continuous Extreme Value Model using Italian Expenditure Data," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201203, University of Turin.
  39. Arthur, Maria de Fatima S.R. & Zahran, Sammy & Bucini, Gabriela, 2010. "On the adoption of electricity as a domestic source by Mozambican households," Energy Policy, Elsevier, vol. 38(11), pages 7235-7249, November.
  40. Safiullah, Hameed, 2011. "Evaluation of Grid Level Impacts of Electric Vehicles," MPRA Paper 58517, University Library of Munich, Germany.
  41. Aydin, Erdal & Brounen, Dirk, 2019. "The impact of policy on residential energy consumption," Energy, Elsevier, vol. 169(C), pages 115-129.
  42. Alberto Gutierrez-Escolar & Ana Castillo-Martinez & Jose M. Gomez-Pulido & Jose-Maria Gutierrez-Martinez & Zlatko Stapic, 2014. "A New System to Estimate and Reduce Electrical Energy Consumption of Domestic Hot Water in Spain," Energies, MDPI, vol. 7(11), pages 1-19, October.
  43. Frontuto, Vito, 2019. "Forecasting household consumption of fuels: A multiple discrete-continuous approach," Applied Energy, Elsevier, vol. 240(C), pages 205-214.
  44. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  45. Rosas-Flores, Jorge Alberto & Gálvez, David Morillón, 2010. "What goes up: Recent trends in Mexican residential energy use," Energy, Elsevier, vol. 35(6), pages 2596-2602.
  46. Charlier, Dorothée, 2021. "Explaining the energy performance gap in buildings with a latent profile analysis," Energy Policy, Elsevier, vol. 156(C).
  47. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
  48. Debnath, Ramit & Bardhan, Ronita & Sunikka-Blank, Minna, 2019. "How does slum rehabilitation influence appliance ownership? A structural model of non-income drivers," Energy Policy, Elsevier, vol. 132(C), pages 418-428.
  49. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
  50. Hanne Marit Dalen & Bodil M. Larsen, 2013. "Residential end-use electricity demand. Development over time," Discussion Papers 736, Statistics Norway, Research Department.
  51. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
  52. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
  53. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
  54. Safiullah, Hameed, 2011. "Evaluation of Grid Level Impacts of Electric Vehicles," MPRA Paper 59175, University Library of Munich, Germany.
  55. Simone Salotti & Letizia Montinari & Antonio F. Amores & José Manuel Rueda-Cantuche, 2015. "Total expenditure elasticity of non-durable consumption of European households," JRC Research Reports JRC94405, Joint Research Centre.
  56. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
  57. Jeong, Jaehoon & Seob Kim, Chang & Lee, Jongsu, 2011. "Household electricity and gas consumption for heating homes," Energy Policy, Elsevier, vol. 39(5), pages 2679-2687, May.
  58. Huang, Shisheng & Hodge, Bri-Mathias S. & Taheripour, Farzad & Pekny, Joseph F. & Reklaitis, Gintaras V. & Tyner, Wallace E., 2011. "The effects of electricity pricing on PHEV competitiveness," Energy Policy, Elsevier, vol. 39(3), pages 1552-1561, March.
  59. Dorothée Charlier, 2021. "Explaining the energy performance gap in buildings with a latent profile analysis," Post-Print hal-03894155, HAL.
  60. Brencic, Vera & Young, Denise, 2009. "Time-saving innovations, time allocation, and energy use: Evidence from Canadian households," Ecological Economics, Elsevier, vol. 68(11), pages 2859-2867, September.
  61. Xavier Labandeira & José María Labeaga & Miguel Rodríguez, 2008. "The Costs of Kyoto Adjustments for Spanish Households," Working Papers 2008-02, FEDEA.
  62. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex Business School.
  63. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.