IDEAS home Printed from https://ideas.repec.org/r/ecb/ecbwps/20212542.html

Economic predictions with big data: the illusion of sparsity

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nicholas Gray & Finn Lattimore & Kate McLoughlin & Callan Windsor, 2025. "An AI-powered Tool for Central Bank Business Liaisons: Quantitative Indicators and On-demand Insights from Firms," RBA Research Discussion Papers rdp2025-06, Reserve Bank of Australia.
  2. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
  3. Barigozzi, Matteo & Massacci, Daniele, 2025. "Modelling large dimensional datasets with Markov switching factor models," Journal of Econometrics, Elsevier, vol. 247(C).
  4. Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
  5. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
  6. Galbraith, John W. & Zinde-Walsh, Victoria, 2020. "Simple and reliable estimators of coefficients of interest in a model with high-dimensional confounding effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 609-632.
  7. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
  8. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
  9. Niko Hauzenberger & Florian Huber & Luca Onorante, 2021. "Combining shrinkage and sparsity in conjugate vector autoregressive models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
  10. Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
  11. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
  12. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
  13. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
  14. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LLC, vol. 24(1), pages 3-45, March.
  15. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
  16. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
  17. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
  18. Ba Chu & Shafiullah Qureshi, 2023. "Comparing Out-of-Sample Performance of Machine Learning Methods to Forecast U.S. GDP Growth," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1567-1609, December.
  19. Nicholas Gray & Finn Lattimore & Kate McLoughlin & Callan Windsor, 2025. "An AI-powered Tool for Central Bank Business Liaisons: Quantitative Indicators and On-demand Insights from Firms," Papers 2506.18505, arXiv.org.
  20. Jad Beyhum & Jonas Striaukas, 2023. "Factor-augmented sparse MIDAS regressions with an application to nowcasting," Papers 2306.13362, arXiv.org, revised Oct 2025.
  21. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
  22. Douglas Kiarelly Godoy de Araujo, 2023. "gingado: a machine learning library focused on economics and finance," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
  23. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
  24. Azqueta-Gavaldon, Andres & Hirschbühl, Dominik & Onorante, Luca & Saiz, Lorena, 2020. "Nowcasting business cycle turning points with stock networks and machine learning," Working Paper Series 2494, European Central Bank.
  25. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
  26. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
  27. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
  28. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  29. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
  30. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
  31. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
  32. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
  33. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
  34. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
  35. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted-average least squares (WALS) estimator," EIEF Working Papers Series 2203, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2022.
  36. Anna Bykhovskaya & Vadim Gorin & Sasha Sodin, 2025. "How weak are weak factors? Uniform inference for signal strength in signal plus noise models," Papers 2507.18554, arXiv.org.
  37. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
  38. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
  39. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
  40. Yong Cai & Santiago Camara & Nicholas Capel, 2021. "It's not always about the money, sometimes it's about sending a message: Evidence of Informational Content in Monetary Policy Announcements," Papers 2111.06365, arXiv.org.
  41. Seo, Beomseok, 2025. "Econometric forecasting using ubiquitous news text: Text-enhanced factor model," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1055-1072.
  42. Bryan Kelly & Semyon Malamud & Kangying Zhou, 2024. "The Virtue of Complexity in Return Prediction," Journal of Finance, American Finance Association, vol. 79(1), pages 459-503, February.
  43. Zhentong Lu & Kenichi Shimizu, 2025. "Estimating Discrete Choice Demand Models with Sparse Market-Product Shocks," Staff Working Papers 25-10, Bank of Canada.
  44. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024. "Out-of-sample predictability in predictive regressions with many predictor candidates," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
  45. Fang, Yi & Chen, Yuzhi & Ren, Hang, 2023. "A factor pricing model based on machine learning algorithm," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 280-297.
  46. Florian Eckert & Philipp Kronenberg & Heiner Mikosch & Stefan Neuwirth, 2025. "Tracking Economic Activity With Alternative High‐Frequency Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 270-290, April.
  47. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
  48. Kuppenheimer, Gregory & Shelly, Stuart & Strauss, Jack, 2023. "Can machine learning identify sector-level financial ratios that predict sector returns?," Finance Research Letters, Elsevier, vol. 57(C).
  49. Zhentao Shi & Yishu Wang, 2025. "L2-relaxation for Economic Prediction," Papers 2510.12183, arXiv.org.
  50. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
  51. Mike West, 2020. "Reply to Discussion of “Bayesian forecasting of multivariate time series: scalability, structure uncertainty and decisions”," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 41-44, February.
  52. Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
  53. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
  54. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
  55. Beyhum, Jad & Striaukas, Jonas, 2024. "Testing for sparse idiosyncratic components in factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 244(1).
  56. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
  57. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
  58. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  59. Woloszko, Nicolas, 2024. "Nowcasting with panels and alternative data: The OECD weekly tracker," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1302-1335.
  60. Paranhos, Livia, 2021. "Predicting Inflation with Neural Networks," The Warwick Economics Research Paper Series (TWERPS) 1344, University of Warwick, Department of Economics.
  61. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2025. "Model Averaging and Double Machine Learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 249-269, April.
  62. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
  63. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
  64. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
  65. Hongwei Shi & Xinyu Zhang & Xu Guo & Baihua He & Chenyang Wang, 2025. "Testing overidentifying restrictions on high-dimensional instruments and covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(2), pages 331-352, April.
  66. Antonio Marsi, 2023. "Predicting European stock returns using machine learning," SN Business & Economics, Springer, vol. 3(7), pages 1-25, July.
  67. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
  68. Anastasios Evgenidis & Anastasios G. Malliaris, 2022. "Monetary policy, financial shocks and economic activity," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 429-456, August.
  69. Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
  70. Faridoon Khan & Hasnain Iftikhar & Imran Khan & Paulo Canas Rodrigues & Abdulmajeed Atiah Alharbi & Jeza Allohibi, 2025. "A Hybrid Vector Autoregressive Model for Accurate Macroeconomic Forecasting: An Application to the U.S. Economy," Mathematics, MDPI, vol. 13(11), pages 1-16, May.
  71. Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
  72. Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
  73. Pellegrino, Filippo, 2025. "Selecting time-series hyperparameters with the artificial jackknife," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  74. Jewson, Jack & Li, Li & Battaglia, Laura & Hansen, Stephen & Rossell, David & Zwiernik, Piotr, 2022. "Graphical model inference with external network data," CEPR Discussion Papers 17638, C.E.P.R. Discussion Papers.
  75. Bachmair, K. & Schmitz, N., 2025. "Forecasting Macro with Finance," Cambridge Working Papers in Economics 2574, Faculty of Economics, University of Cambridge.
  76. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
  77. Jonas Krampe & Luca Margaritella, 2024. "Decomposing Global Bank Network Connectedness: What is Common, Idiosyncratic and When?," Papers 2402.02482, arXiv.org, revised Mar 2025.
  78. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
  79. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
  80. Gruber, Luis & Kastner, Gregor, 2025. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," International Journal of Forecasting, Elsevier, vol. 41(4), pages 1589-1619.
  81. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
  82. Yuan Liao & Xinjie Ma & Andreas Neuhierl & Zhentao Shi, 2023. "Economic Forecasts Using Many Noises," Papers 2312.05593, arXiv.org, revised Dec 2023.
  83. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
  84. Mekelburg, Erik & Strauss, Jack, 2024. "Pooling and winsorizing machine learning forecasts to predict stock returns with high-dimensional data," Journal of Empirical Finance, Elsevier, vol. 79(C).
  85. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
  86. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
  87. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "LASSO Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Jan 2026.
  88. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
  89. Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
  90. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
  91. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
  92. Hyungsik Roger Moon & Frank Schorfheide & Boyuan Zhang, 2023. "Bayesian Estimation of Panel Models under Potentially Sparse Heterogeneity," PIER Working Paper Archive 23-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  93. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
  94. Wang, Chuyu & Zhang, Guanglong, 2025. "In the shadows of opacity: Firm information quality and latent factor model performance," International Review of Financial Analysis, Elsevier, vol. 100(C).
  95. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
  96. Matteo Aquilina & Douglas Kiarelly Godoy de Araujo & Gaston Gelos & Taejin Park & Fernando Perez-Cruz, 2025. "Harnessing artificial intelligence for monitoring financial markets," BIS Working Papers 1291, Bank for International Settlements.
  97. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
  98. Atin Aboutorabi & Ga'etan de Rassenfosse, 2024. "Nowcasting R&D Expenditures: A Machine Learning Approach," Papers 2407.11765, arXiv.org.
  99. Chengwang Liao & Zhentao Shi & Yapeng Zheng, 2025. "A Relaxation Approach to Synthetic Control," Papers 2508.01793, arXiv.org.
  100. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2024. "Variational Inference for Large Bayesian Vector Autoregressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1066-1082, July.
  101. Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
  102. Archanskaia, Elizaveta & Canton, Erik & Hobza, Alexandr & Nikolov, Plamen & Simons, Wouter, 2023. "The asymmetric impact of COVID-19: A novel approach to quantifying financial distress across industries," European Economic Review, Elsevier, vol. 158(C).
  103. Alena Skolkova, 2023. "Model Averaging with Ridge Regularization," CERGE-EI Working Papers wp758, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  104. David Kohns & Galina Potjagailo, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
  105. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
  106. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
  107. Simone Tonini & Francesca Chiaromonte & Alessandro Giovannelli, 2022. "On the impact of serial dependence on penalized regression methods," LEM Papers Series 2022/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.