IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.18554.html
   My bibliography  Save this paper

How weak are weak factors? Uniform inference for signal strength in signal plus noise models

Author

Listed:
  • Anna Bykhovskaya
  • Vadim Gorin
  • Sasha Sodin

Abstract

The paper analyzes four classical signal-plus-noise models: the factor model, spiked sample covariance matrices, the sum of a Wigner matrix and a low-rank perturbation, and canonical correlation analysis with low-rank dependencies. The objective is to construct confidence intervals for the signal strength that are uniformly valid across all regimes - strong, weak, and critical signals. We demonstrate that traditional Gaussian approximations fail in the critical regime. Instead, we introduce a universal transitional distribution that enables valid inference across the entire spectrum of signal strengths. The approach is illustrated through applications in macroeconomics and finance.

Suggested Citation

  • Anna Bykhovskaya & Vadim Gorin & Sasha Sodin, 2025. "How weak are weak factors? Uniform inference for signal strength in signal plus noise models," Papers 2507.18554, arXiv.org.
  • Handle: RePEc:arx:papers:2507.18554
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.18554
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    2. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    5. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    6. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    7. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    8. E. Andreou & P. Gagliardini & E. Ghysels & M. Rubin, 2019. "Inference in Group Factor Models With an Application to Mixed‐Frequency Data," Econometrica, Econometric Society, vol. 87(4), pages 1267-1305, July.
    9. Yoshimasa Uematsu & Takashi Yamagata, 2022. "Estimation of Sparsity-Induced Weak Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 213-227, December.
    10. Zheng Tracy Ke & Yucong Ma & Xihong Lin, 2023. "Estimation of the Number of Spiked Eigenvalues in a Covariance Matrix by Bulk Eigenvalue Matching Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 374-392, January.
    11. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    12. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    13. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    14. Shabalin, Andrey A. & Nobel, Andrew B., 2013. "Reconstruction of a low-rank matrix in the presence of Gaussian noise," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 67-76.
    15. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    16. M Hashem Pesaran & Ron P Smith, 2025. "Identifying and Exploiting Alpha in Linear Asset Pricing Models with Strong, Semi-Strong, and Latent Factors," Journal of Financial Econometrics, Oxford University Press, vol. 23(3), pages 103-126.
    17. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    18. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    20. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    2. Songnian Chen & Junlong Feng, 2025. "Universal Factor Models," Papers 2501.15761, arXiv.org, revised Jul 2025.
    3. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    4. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak Factor Models and the Analysis of High-Dimensional Time Series," Working Papers ECARES 2024-14, ULB -- Universite Libre de Bruxelles.
    5. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    6. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    7. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    8. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    9. Peiyun Jiang & Takashi Yamagata, 2025. "An alternative bootstrap procedure for factor-augmented regression models," Papers 2510.00947, arXiv.org.
    10. Peiyun Jiang & Yoshimasa Uematsu & Takashi Yamagata, 2025. "Bias Correction in Factor-Augmented Regression Models with Weak Factors," Papers 2509.02066, arXiv.org, revised Oct 2025.
    11. Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org, revised Nov 2024.
    12. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    13. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    14. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    15. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    16. Andreou, E. & Gagliardini, P. & Ghysels, E. & Rubin, M., 2025. "Spanning latent and observable factors," Journal of Econometrics, Elsevier, vol. 248(C).
    17. Yuan Liao & Viktor Todorov, 2024. "Changes in the span of systematic risk exposures," Quantitative Economics, Econometric Society, vol. 15(3), pages 817-847, July.
    18. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    19. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    20. Wanbo Lu & Guanglin Huang & Kris Boudt, 2024. "Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 24/1085, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.18554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.