Machine Learning Time Series Regressions With an Application to Nowcasting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
- Brian Godwin Lim & Dominic Dayta & Benedict Ryan Tiu & Renzo Roel Tan & Len Patrick Dominic Garces & Kazushi Ikeda, 2025. "Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange," Papers 2510.15938, arXiv.org.
- Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2024. "Big data financial transactions and GDP nowcasting: The case of Turkey," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 227-248, March.
- Caroline Jardet & Baptiste Meunier, 2022.
"Nowcasting world GDP growth with high‐frequency data,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
- Caroline Jardet & Baptiste Meunier, 2020. "Nowcasting World GDP Growth with High-Frequency Data," Working papers 788, Banque de France.
- Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Post-Print hal-03647097, HAL.
- Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
- Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024.
"Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
- Chronopoulos, Ilias & Raftapostolos, Aristeidis & Kapetanios, George, 2023. "Forecasting Value-at-Risk using deep neural network quantile regression," Essex Finance Centre Working Papers 34837, University of Essex, Essex Business School.
- Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2024. "Nowcasting Norwegian household consumption with debit card transaction data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1220-1244, November.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2025.
"Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables,"
Working Papers
25-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised May 2025.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2025. "Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables," CIRANO Working Papers 2025s-15, CIRANO.
- Ali Batuhan Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Turquía | Big Data y Nowcasting: consumo e inversión de transacciones bancarias [Turkey | Big Data and Nowcasting: Consumption and Investment from Bank Transactions]," Working Papers 21/07, BBVA Bank, Economic Research Department.
- Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024.
"Panel data nowcasting: The case of price–earnings ratios,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2023. "Panel Data Nowcasting: The Case of Price-Earnings Ratios," Papers 2307.02673, arXiv.org.
- Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
- Luca Barbaglia & Sebastiano Manzan & Elisa Tosetti, 2023. "Forecasting Loan Default in Europe with Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 569-596.
- Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2022.
"The boosted HP filter is more general than you might think,"
Papers
2209.09810, arXiv.org, revised Apr 2024.
- Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
- Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Amélie Charles & Olivier Darné, 2022. "Backcasting world trade growth using data reduction methods," The World Economy, Wiley Blackwell, vol. 45(10), pages 3169-3191, October.
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- Kexin Zhang & Simon Trimborn, 2024. "Influential assets in Large-Scale Vector AutoRegressive Models," Tinbergen Institute Discussion Papers 24-080/III, Tinbergen Institute.
- Frank Schorfheide & Dongho Song, 2024.
"Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic,"
International Journal of Central Banking, International Journal of Central Banking, vol. 20(4), pages 275-320, October.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," Working Papers 20-26, Federal Reserve Bank of Philadelphia.
- Frank Schorfheide & Dongho Song, 2020. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," PIER Working Paper Archive 20-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Frank Schorfheide & Dongho Song, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," NBER Working Papers 29535, National Bureau of Economic Research, Inc.
- Schorfheide, Frank & Song, Dongho, 2021. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," CEPR Discussion Papers 16760, C.E.P.R. Discussion Papers.
- Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Wei Miao & Jad Beyhum & Jonas Striaukas & Ingrid Van Keilegom, 2025. "High-dimensional censored MIDAS logistic regression for corporate survival forecasting," Papers 2502.09740, arXiv.org.
- Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
- Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2021. "Big Data Information and Nowcasting: Consumption and Investment from Bank Transactions in Turkey," Papers 2107.03299, arXiv.org.
- Quinlan Lee, Stephen Snudden, 2025. "Exact Mixed-Frequency Data Sampling (eMIDAS)," LCERPA Working Papers jc0157, Laurier Centre for Economic Research and Policy Analysis, revised Jun 2025.
- d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025.
"Satellites turn “concrete”: Tracking cement with satellite data and neural networks,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023. "Satellites Turn Concrete : Tracking Cement with Satellite Data and Neural Networks," Working papers 916, Banque de France.
- d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
- Alexandre d'Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2024. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Post-Print hal-05104995, HAL.
- Boriss Siliverstovs, 2021. "New York FED Staff Nowcasts and Reality: What Can We Learn about the Future, the Present, and the Past?," Econometrics, MDPI, vol. 9(1), pages 1-25, March.
- Sun, Yiqiao & de Bondt, Gabe, 2025. "Enhancing GDP nowcasts with ChatGPT: a novel application of PMI news releases," Working Paper Series 3063, European Central Bank.
- Beomseok Seo & Younghwan Lee & Hyungbae Cho, 2024. "Measuring News Sentiment of Korea Using Transformer," Korean Economic Review, Korean Economic Association, vol. 40, pages 149-176.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Hafner, Christian & Wang, Linqi, 2020.
"Dynamic portfolio selection with sector-specific regularization,"
LIDAM Discussion Papers ISBA
2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, Christian M. & Wang, Linqi, 2022. "Dynamic portfolio selection with sector-specific regularization," LIDAM Reprints ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hafner, Christian M. & Wang, Linqi, 2022. "Dynamic portfolio selection with sector-specific regularization," LIDAM Reprints LFIN 2022007, Université catholique de Louvain, Louvain Finance (LFIN).
- Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
- Alain Hecq & Marie Ternes & Ines Wilms, 2025.
"Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 1946-1968, September.
- Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023.
"Testing big data in a big crisis: Nowcasting under Covid-19,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022. "Testing big data in a big crisis: Nowcasting under COVID-19," JRC Working Papers in Economics and Finance 2022-06, Joint Research Centre, European Commission.
- Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
- Lahiri, Kajal & Yang, Cheng, 2022.
"Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Kajal Lahiri & Cheng Yang, 2021. "Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York," CESifo Working Paper Series 9365, CESifo.
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023.
"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application," Papers 2008.03600, arXiv.org, revised Nov 2021.
- Sander Barendse, 2023. "Expected Shortfall LASSO," Papers 2307.01033, arXiv.org, revised Jan 2024.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Ardakani, Omid M. & Dalko, Viktoria & Shim, Hyeeun, 2025. "Information loss from perception alignment," International Review of Economics & Finance, Elsevier, vol. 97(C).
- Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
- Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
- Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "LASSO Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Jan 2026.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Anders Bredahl Kock & Rasmus S{o}ndergaard Pedersen & Jesper Riis-Vestergaard S{o}rensen, 2024. "Data-Driven Tuning Parameter Selection for High-Dimensional Vector Autoregressions," Papers 2403.06657, arXiv.org, revised Dec 2024.
- Tony Chernis & Niko Hauzenberger & Haroon Mumtaz & Michael Pfarrhofer, 2025. "A Bayesian Gaussian Process Dynamic Factor Model," Papers 2509.04928, arXiv.org.
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Samuel N. Cohen & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Arthur Turrell & Lingyi Yang, 2023. "Nowcasting using regression on signatures," Papers 2305.10256, arXiv.org, revised Dec 2025.
- Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2024. "The boosted Hodrick‐Prescott filter is more general than you might think," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1260-1281, November.
- Amélie Charles & Olivier Darné, 2022. "Backcasting world trade growth using data reduction methods," Post-Print hal-04027843, HAL.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Bin Chen & Yuefeng Han & Qiyang Yu, 2025. "Diffusion Index Forecast with Tensor Data," Papers 2511.02235, arXiv.org.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
- Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
- Liu, Han & Chen, Yuxiu & Hu, Mingming & Chen, Jason Li, 2025. "Forecast by mixed-frequency dynamic panel model," Annals of Tourism Research, Elsevier, vol. 110(C).
- Jairo Flores & Bruno Gonzaga & Walter Ruelas-Huanca & Juan Tang, 2025. "Nowcasting Peru's GDP with Machine Learning Methods," IHEID Working Papers 01-2025, Economics Section, The Graduate Institute of International Studies.
- Rodrigo Moreira & Larissa Ferreira Rodrigues Moreira & Flávio Oliveira Silva, 2025. "Brazilian Selic Rate Forecasting with Deep Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1319-1339, March.
- Haowen Bao & Yongmiao Hong & Yuying Sun & Shouyang Wang, 2024. "Sparse Interval-valued Time Series Modeling with Machine Learning," Papers 2411.09452, arXiv.org.
- Seo, Beomseok, 2025. "Econometric forecasting using ubiquitous news text: Text-enhanced factor model," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1055-1072.
- Daniel Hopp, 2024. "Benchmarking econometric and machine learning methodologies in nowcasting GDP," Empirical Economics, Springer, vol. 66(5), pages 2191-2247, May.
- Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
- David Kohns & Galina Potjagailo, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- Hans Genberg & Özer Karagedikli, 2021. "Machine Learning and Central Banks: Ready for Prime Time?," Working Papers wp43, South East Asian Central Banks (SEACEN) Research and Training Centre.
- Wichitaksorn, Nuttanan, 2022. "Analyzing and forecasting Thai macroeconomic data using mixed-frequency approach," Journal of Asian Economics, Elsevier, vol. 78(C).
- Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
Printed from https://ideas.repec.org/r/ajf/louvlf/2021004.html