Enhancing GDP nowcasts with ChatGPT: a novel application of PMI news releases
Author
Abstract
Suggested Citation
Note: 2759141
Download full text from publisher
References listed on IDEAS
- Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2023. "Forecasting with Economic News," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 708-719, July.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Raïsa Basselier & David Antonio Liedo & Geert Langenus, 2018. "Nowcasting Real Economic Activity in the Euro Area: Assessing the Impact of Qualitative Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 1-46, April.
- Ma, Feng & Lyu, Zhichong & Li, Haibo, 2024. "Can ChatGPT predict Chinese equity premiums?," Finance Research Letters, Elsevier, vol. 65(C).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Jaqueson K. Galimberti, 2020.
"Forecasting GDP Growth from Outer Space,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
- Jaqueson K Galimberti, 2017. "Forecasting GDP growth from the outer space," KOF Working papers 17-427, KOF Swiss Economic Institute, ETH Zurich.
- Jaqueson K. Galimberti, 2020. "Forecasting GDP growth from outer space," Working Papers 2020-02, Auckland University of Technology, Department of Economics.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Anton Korinek, 2023. "Generative AI for Economic Research: Use Cases and Implications for Economists," Journal of Economic Literature, American Economic Association, vol. 61(4), pages 1281-1317, December.
- Tomaz Cajner & Leland D. Crane & Christopher J. Kurz & Norman J. Morin & Paul E. Soto & Betsy Vrankovich, 2024. "Manufacturing Sentiment: Forecasting Industrial Production with Text Analysis," Finance and Economics Discussion Series 2024-026, Board of Governors of the Federal Reserve System (U.S.).
- Sharpe, Steven A. & Sinha, Nitish R. & Hollrah, Christopher A., 2023. "The power of narrative sentiment in economic forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1097-1121.
- J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
- Smales, Lee A., 2023. "Classification of RBA monetary policy announcements using ChatGPT," Finance Research Letters, Elsevier, vol. 58(PC).
- Nélida Díaz Sobrino & Corinna Ghirelli & Samuel Hurtado & Javier J. Pérez & Alberto Urtasun, 2022. "The narrative about the economy as a shadow forecast: an analysis using Bank of Spain quarterly reports," Applied Economics, Taylor & Francis Journals, vol. 54(25), pages 2874-2887, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025.
"Satellites turn “concrete”: Tracking cement with satellite data and neural networks,"
Journal of Econometrics, Elsevier, vol. 249(PC).
- Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023. "Satellites Turn Concrete : Tracking Cement with Satellite Data and Neural Networks," Working papers 916, Banque de France.
- Alexandre d'Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2024. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Post-Print hal-05104995, HAL.
- d’Aspremont, Alexandre & Arous, Simon Ben & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2024. "Satellites turn “concrete”: tracking cement with satellite data and neural networks," Working Paper Series 2900, European Central Bank.
- Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.
- Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
- Jaqueson K. Galimberti, 2020.
"Forecasting GDP Growth from Outer Space,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
- Jaqueson K Galimberti, 2017. "Forecasting GDP growth from the outer space," KOF Working papers 17-427, KOF Swiss Economic Institute, ETH Zurich.
- Jaqueson K. Galimberti, 2020. "Forecasting GDP growth from outer space," Working Papers 2020-02, Auckland University of Technology, Department of Economics.
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
- Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
- Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Barbara Rossi, 2013.
"Exchange Rate Predictability,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
- Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2013. "Exchange rate predictability," Economics Working Papers 1369, Department of Economics and Business, Universitat Pompeu Fabra.
- Barbara Rossi, 2015. "Exchange Rate Predictability," Working Papers 690, Barcelona School of Economics.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024.
"Panel data nowcasting: The case of price–earnings ratios,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2023. "Panel Data Nowcasting: The Case of Price-Earnings Ratios," Papers 2307.02673, arXiv.org.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Robert Lehmann & Antje Weyh, 2016.
"Forecasting Employment in Europe: Are Survey Results Helpful?,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
- Robert Lehmann & Antje Weyh, 2014. "Forecasting employment in Europe: Are survey results helpful?," ifo Working Paper Series 182, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Lehmann, Robert & Weyh, Antje, 2015. "Forecasting employment in Europe: Are survey results helpful?," IAB-Discussion Paper 201530, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
- Marczak, Martyna & Proietti, Tommaso, 2016.
"Outlier detection in structural time series models: The indicator saturation approach,"
International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
- Martyna Marczak & Tommaso Proietti, 2014. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," CREATES Research Papers 2014-20, Department of Economics and Business Economics, Aarhus University.
- Marczak, Martyna & Proietti, Tommaso, 2015. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113137, Verein für Socialpolitik / German Economic Association.
- Marczak, Martyna & Proietti, Tommaso, 2014. "Outlier detection in structural time series models: The indicator saturation approach," FZID Discussion Papers 90-2014, University of Hohenheim, Center for Research on Innovation and Services (FZID).
- Martyna Marczak & Tommaso Proietti, 2014. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," CEIS Research Paper 325, Tor Vergata University, CEIS, revised 08 Aug 2014.
- Abdullah Almansour & Margaret Insley, 2016.
"The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands,"
The Energy Journal, , vol. 37(2), pages 61-88, April.
- Abdullah Almansour and Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Abdullah Almansour & Margaret Insley, 2013. "The impact of stochastic extraction cost on the value of an exhaustible resource: An application to the Alberta oil sands," Working Papers 1303, University of Waterloo, Department of Economics, revised Jun 2013.
- Pablo Pincheira B., 2014. "Predictive Evaluation of Sectoral and Total Employment Based on Entrepreneurial Confidence Indicators," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 17(1), pages 66-87, April.
More about this item
Keywords
; ; ; ; ;JEL classification:
- C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2025-07-21 (Computational Economics)
- NEP-EEC-2025-07-21 (European Economics)
- NEP-FOR-2025-07-21 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20253063. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.