IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.02235.html
   My bibliography  Save this paper

Diffusion Index Forecast with Tensor Data

Author

Listed:
  • Bin Chen
  • Yuefeng Han
  • Qiyang Yu

Abstract

In this paper, we consider diffusion index forecast with both tensor and non-tensor predictors, where the tensor structure is preserved with a Canonical Polyadic (CP) tensor factor model. When the number of non-tensor predictors is small, we study the asymptotic properties of the least-squared estimator in this tensor factor-augmented regression, allowing for factors with different strengths. We derive an analytical formula for prediction intervals that accounts for the estimation uncertainty of the latent factors. In addition, we propose a novel thresholding estimator for the high-dimensional covariance matrix that is robust to cross-sectional dependence. When the number of non-tensor predictors exceeds or diverges with the sample size, we introduce a multi-source factor-augmented sparse regression model and establish the consistency of the corresponding penalized estimator. Simulation studies validate our theoretical results and an empirical application to US trade flows demonstrates the advantages of our approach over other popular methods in the literature.

Suggested Citation

  • Bin Chen & Yuefeng Han & Qiyang Yu, 2025. "Diffusion Index Forecast with Tensor Data," Papers 2511.02235, arXiv.org.
  • Handle: RePEc:arx:papers:2511.02235
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.02235
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.02235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.