IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.15938.html
   My bibliography  Save this paper

Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange

Author

Listed:
  • Brian Godwin Lim
  • Dominic Dayta
  • Benedict Ryan Tiu
  • Renzo Roel Tan
  • Len Patrick Dominic Garces
  • Kazushi Ikeda

Abstract

The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics.

Suggested Citation

  • Brian Godwin Lim & Dominic Dayta & Benedict Ryan Tiu & Renzo Roel Tan & Len Patrick Dominic Garces & Kazushi Ikeda, 2025. "Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange," Papers 2510.15938, arXiv.org.
  • Handle: RePEc:arx:papers:2510.15938
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.15938
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018. "Nowcasting Indonesia," Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
    2. Molero-González, L. & Trinidad-Segovia, J.E. & Sánchez-Granero, M.A. & García-Medina, A., 2023. "Market Beta is not dead: An approach from Random Matrix Theory," Finance Research Letters, Elsevier, vol. 55(PA).
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Stefano Giglio & Bryan Kelly & Dacheng Xiu, 2022. "Factor Models, Machine Learning, and Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 337-368, November.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Reinganum, Marc R, 1981. "The Arbitrage Pricing Theory: Some Empirical Results," Journal of Finance, American Finance Association, vol. 36(2), pages 313-321, May.
    7. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    8. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    9. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    10. Binita Kumari & Srikanta Patnaik & Tripti Swarnkar, 2023. "Feature selection for stock price prediction: a critical review," International Journal of Intelligent Enterprise, Inderscience Enterprises Ltd, vol. 10(1), pages 48-72.
    11. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    12. Jiahui Xi & Conghua Wen & Yifan Tang & Feifan Zhao, 2024. "A factor score clustering approach to analyze the biopharmaceutical sector in the Chinese market during COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
    13. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    14. Bo Li, 2023. "An explanation for the distribution characteristics of stock returns," Papers 2312.02472, arXiv.org.
    15. Mahsa Ghorbani & Edwin K P Chong, 2020. "Stock price prediction using principal components," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    16. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    17. André F. Perold, 2004. "The Capital Asset Pricing Model," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 3-24, Summer.
    18. Matteo Rossi, 2016. "The capital asset pricing model: a critical literature review," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 18(5), pages 604-617.
    19. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. Gábor Neszveda, 2025. "Aspiration level, probability of success, and stock returns: an empirical test," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-29, December.
    22. Michael Phelan, 1997. "Probability and Statistics Applied to the Practice of Financial Risk Management: The Case of J.P. Morgan's RiskMetrics™," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 175-200, October.
    23. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    24. Cong Wang, 2024. "Stock return prediction with multiple measures using neural network models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    25. Blume, Marshall E & Friend, Irwin, 1973. "A New Look at the Capital Asset Pricing Model," Journal of Finance, American Finance Association, vol. 28(1), pages 19-33, March.
    26. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    27. Li, Yun Daisy & Iscan, Talan B. & Xu, Kuan, 2010. "The impact of monetary policy shocks on stock prices: Evidence from Canada and the United States," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 876-896, September.
    28. Ewa Feder-Sempach & Piotr Szczepocki & Joanna Bogołębska, 2024. "Global uncertainty and potential shelters: gold, bitcoin, and currencies as weak and strong safe havens for main world stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-23, December.
    29. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
    30. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    31. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    32. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    33. Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    34. repec:idn:journl:v:20:y:2018:i:3:p:1-30 is not listed on IDEAS
    35. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    36. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    37. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2024. "Forecasting relative returns for S&P 500 stocks using machine learning," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-16, December.
    38. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    39. Kothari, S. P. & Zimmerman, Jerold L., 1995. "Price and return models," Journal of Accounting and Economics, Elsevier, vol. 20(2), pages 155-192, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    3. Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
    4. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    5. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    7. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    8. Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
    9. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    10. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    11. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    12. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    13. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    14. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    15. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    16. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    17. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    18. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    19. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    20. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.15938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.