IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v7y2021i1d10.1186_s40854-021-00243-3.html
   My bibliography  Save this article

An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination

Author

Listed:
  • Hakan Gunduz

    (Bandirma Onyedi Eylul University)

Abstract

In this study, the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based, deep-learning (LSTM) and ensemble learning (LightGBM) models. These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics. While the first experiments directly used the own stock features as the model inputs, the second experiments utilized reduced stock features through Variational AutoEncoders (VAE). In the last experiments, in order to grasp the effects of the other banking stocks on individual stock performance, the features belonging to other stocks were also given as inputs to our models. While combining other stock features was done for both own (named as allstock_own) and VAE-reduced (named as allstock_VAE) stock features, the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination. As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model, the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675. Although the classification results achieved with both feature types was close, allstock_VAE achieved these results using nearly 16.67% less features compared to allstock_own. When all experimental results were examined, it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features. It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features.

Suggested Citation

  • Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
  • Handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00243-3
    DOI: 10.1186/s40854-021-00243-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-021-00243-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-021-00243-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
    2. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    3. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    4. Nick Guenther & Matthias Schonlau, 2016. "Support vector machines," Stata Journal, StataCorp LP, vol. 16(4), pages 917-937, December.
    5. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    6. Shun Chen & Lei Ge, 2019. "Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1507-1515, September.
    7. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    8. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    9. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    2. Htet Htet Htun & Michael Biehl & Nicolai Petkov, 2023. "Survey of feature selection and extraction techniques for stock market prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    3. Chen, Xun-Qi & Ma, Chao-Qun & Ren, Yi-Shuai & Lei, Yu-Tian & Huynh, Ngoc Quang Anh & Narayan, Seema, 2023. "Explainable artificial intelligence in finance: A bibliometric review," Finance Research Letters, Elsevier, vol. 56(C).
    4. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    2. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    3. Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.
    4. Catalin Stoean & Wiesław Paja & Ruxandra Stoean & Adrian Sandita, 2019. "Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    5. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    6. Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    7. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    8. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    9. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    10. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    11. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    12. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    13. Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
    14. Sadefo Kamdem, Jules & Bandolo Essomba, Rose & Njong Berinyuy, James, 2020. "Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Zhaofeng Zhang & Banghao Chen & Shengxin Zhu & Nicolas Langren'e, 2024. "From attention to profit: quantitative trading strategy based on transformer," Papers 2404.00424, arXiv.org.
    16. Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
    17. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    18. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    19. Firuz Kamalov, 2019. "Forecasting significant stock price changes using neural networks," Papers 1912.08791, arXiv.org.
    20. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00243-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.