IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i9p1507-1515.html
   My bibliography  Save this article

Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction

Author

Listed:
  • Shun Chen
  • Lei Ge

Abstract

State-of-the-art methods using attention mechanism in Recurrent Neural Networks have shown exceptional performance targeting sequential predictions and classifications. We explore the attention mechanism in Long–Short-Term Memory (LSTM) network based stock price movement prediction. Our proposed model significantly enhances the LSTM prediction performance in the Hong Kong stock market. The attention LSTM (AttLSTM) model is compared with the LSTM model in Hong Kong stock movement prediction. Further parameter tuning results also demonstrate the effectiveness of the attention mechanism in LSTM-based prediction method.

Suggested Citation

  • Shun Chen & Lei Ge, 2019. "Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1507-1515, September.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1507-1515
    DOI: 10.1080/14697688.2019.1622287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1622287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1622287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    2. Niu, Hongli & Xu, Kunliang & Liu, Cheng, 2021. "A decomposition-ensemble model with regrouping method and attention-based gated recurrent unit network for energy price prediction," Energy, Elsevier, vol. 231(C).
    3. Ito, Katsuki & Iima, Hitoshi & Kitamura, Yoshihiro, 2022. "LSTM forecasting foreign exchange rates using limit order book," Finance Research Letters, Elsevier, vol. 47(PA).
    4. Fateme Shahabi Nejad & Mohammad Mehdi Ebadzadeh, 2023. "Stock market forecasting using DRAGAN and feature matching," Papers 2301.05693, arXiv.org.
    5. Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    6. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    7. Yi Fu & Shuai Cao & Tao Pang, 2020. "A Sustainable Quantitative Stock Selection Strategy Based on Dynamic Factor Adjustment," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    8. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.
    9. Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).
    10. Qinkai Chen, 2021. "Stock Movement Prediction with Financial News using Contextualized Embedding from BERT," Papers 2107.08721, arXiv.org.
    11. Cheng Zhao & Ping Hu & Xiaohui Liu & Xuefeng Lan & Haiming Zhang, 2023. "Stock Market Analysis Using Time Series Relational Models for Stock Price Prediction," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
    12. Chuting Sun & Qi Wu & Xing Yan, 2023. "Dynamic CVaR Portfolio Construction with Attention-Powered Generative Factor Learning," Papers 2301.07318, arXiv.org, revised Jan 2024.
    13. Yan Guo & Dezhao Tang & Wei Tang & Senqi Yang & Qichao Tang & Yang Feng & Fang Zhang, 2022. "Agricultural Price Prediction Based on Combined Forecasting Model under Spatial-Temporal Influencing Factors," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    15. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:9:p:1507-1515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.