IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.00086.html
   My bibliography  Save this paper

Machine Learning for Economics Research: When What and How?

Author

Listed:
  • Ajit Desai

Abstract

This article provides a curated review of selected papers published in prominent economics journals that use machine learning (ML) tools for research and policy analysis. The review focuses on three key questions: (1) when ML is used in economics, (2) what ML models are commonly preferred, and (3) how they are used for economic applications. The review highlights that ML is particularly used to process nontraditional and unstructured data, capture strong nonlinearity, and improve prediction accuracy. Deep learning models are suitable for nontraditional data, whereas ensemble learning models are preferred for traditional datasets. While traditional econometric models may suffice for analyzing low-complexity data, the increasing complexity of economic data due to rapid digitalization and the growing literature suggests that ML is becoming an essential addition to the econometrician's toolbox.

Suggested Citation

  • Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2304.00086
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.00086
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    2. Francesco Decarolis & Gabriele Rovigatti, 2021. "From Mad Men to Maths Men: Concentration and Buyer Power in Online Advertising," American Economic Review, American Economic Association, vol. 111(10), pages 3299-3327, October.
    3. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    4. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    5. Francesco Bianchi & Sydney C. Ludvigson & Sai Ma, 2022. "Belief Distortions and Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 112(7), pages 2269-2315, July.
    6. Will Dobbie & Andres Liberman & Daniel Paravisini & Vikram Pathania, 2021. "Measuring Bias in Consumer Lending [Loan Prospecting and the Loss of Soft Information]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 2799-2832.
    7. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    8. Nikhil Naik & Ramesh Raskar & César A. Hidalgo, 2016. "Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance," American Economic Review, American Economic Association, vol. 106(5), pages 128-132, May.
    9. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    10. Oriana Bandiera & Andrea Prat & Stephen Hansen & Raffaella Sadun, 2020. "CEO Behavior and Firm Performance," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1325-1369.
    11. Dave Donaldson & Adam Storeygard, 2016. "The View from Above: Applications of Satellite Data in Economics," Journal of Economic Perspectives, American Economic Association, vol. 30(4), pages 171-198, Fall.
    12. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    13. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    14. Jonathan Hersh & Matthew Harding, 2018. "Big Data in economics," IZA World of Labor, Institute of Labor Economics (IZA), pages 451-451, September.
    15. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    16. Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022. "Can we measure inflation expectations using Twitter?," Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
    17. Jaehyun Yoon, 2021. "Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 247-265, January.
    18. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    19. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    20. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    21. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    22. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    23. Hinterlang, Natascha & Tänzer, Alina, 2021. "Optimal monetary policy using reinforcement learning," Discussion Papers 51/2021, Deutsche Bundesbank.
    24. Sendhil Mullainathan & Ziad Obermeyer, 2022. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care [“The Determinants of Productivity in Medical Testing: Intensity and Allocation of Care,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(2), pages 679-727.
    25. Maliar, Lilia & Maliar, Serguei & Winant, Pablo, 2021. "Deep learning for solving dynamic economic models," Journal of Monetary Economics, Elsevier, vol. 122(C), pages 76-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    2. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    4. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    5. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    6. Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    8. Achten, Sandra & Lessmann, Christian, 2020. "Spatial inequality, geography and economic activity," World Development, Elsevier, vol. 136(C).
    9. Yulin Liu & Luyao Zhang, 2022. "Cryptocurrency Valuation: An Explainable AI Approach," Papers 2201.12893, arXiv.org, revised Jul 2023.
    10. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
    12. Mehmet Güney Celbiş, 2021. "A machine learning approach to rural entrepreneurship," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 1079-1104, August.
    13. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    14. Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
    15. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    16. Gert Bijnens & Shyngys Karimov & Jozef Konings, 2023. "Does Automatic Wage Indexation Destroy Jobs? A Machine Learning Approach," De Economist, Springer, vol. 171(1), pages 85-117, March.
    17. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    18. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    19. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
    20. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).

    More about this item

    JEL classification:

    • A1 - General Economics and Teaching - - General Economics
    • A10 - General Economics and Teaching - - General Economics - - - General
    • B2 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925
    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.00086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.