IDEAS home Printed from https://ideas.repec.org/p/wat/wpaper/1012.html
   My bibliography  Save this paper

Inference about Clustering and Parametric Assumptions in Covariance Matrix Estimation

Author

Listed:
  • Mikko Packalen

    (Department of Economics, University of Waterloo)

  • Tony Wirjanto

    (School of Accounting & Finance and Department of Statistics and Actuarial Science, University of Waterloo)

Abstract

Selecting an estimator for the variance covariance matrix is an important step in hypothesis testing. From less robust to more robust, the available choices include: Eicker/White heteroskedasticity-robust standard errors, Newey and West heteroskedasticity-and-autocorrelation- robust standard errors, and cluster-robust standard errors. The rationale for using a less robust covariance matrix estimator is that tests conducted using a less robust covariance matrix estimator can have better power properties. This motivates tests that examine the appropriate level of robustness in covariance matrix estimation. We propose a new robustness testing strategy, and show that it can dramatically improve inference about the proper level of robustness in covariance matrix estimation. Our main focus is on inference about clustering although the proposed robustness testing strategy can also improve inference about parametric assumptions in covariance matrix estimation, which we demonstrate for the case of testing for heteroskedasticity. We also show why the existing clustering test and other applications of the White (1980) robustness testing approach perform poorly, which to our knowledge has not been well understood. The insight into why this existing testing approach performs poorly is also the basis for the proposed robustness testing strategy.

Suggested Citation

  • Mikko Packalen & Tony Wirjanto, 2010. "Inference about Clustering and Parametric Assumptions in Covariance Matrix Estimation," Working Papers 1012, University of Waterloo, Department of Economics, revised Nov 2010.
  • Handle: RePEc:wat:wpaper:1012
    as

    Download full text from publisher

    File URL: http://economics.uwaterloo.ca/documents/10-012MP.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2008. "Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression," Econometrica, Econometric Society, vol. 76(1), pages 155-174, January.
    2. Krueger, Alan B. & Mueller, Andreas, 2010. "Job search and unemployment insurance: New evidence from time use data," Journal of Public Economics, Elsevier, vol. 94(3-4), pages 298-307, April.
    3. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    4. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    7. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    8. Mueller, Andreas, 2010. "On-the-job search and wage dispersion: New evidence from time use data," Economics Letters, Elsevier, vol. 109(2), pages 124-127, November.
    9. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    10. White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
    11. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    12. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    13. Montes-Rojas, Gabriel & Sosa-Escudero, Walter, 2011. "Robust tests for heteroskedasticity in the one-way error components model," Journal of Econometrics, Elsevier, vol. 160(2), pages 300-310, February.
    14. repec:hal:journl:peer-00768191 is not listed on IDEAS
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    3. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    4. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    5. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LLC, vol. 19(1), pages 4-60, March.
    6. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    7. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    8. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    9. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    10. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    11. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    12. Christian Bjørnskov & Niklas Potrafke, 2013. "The size and scope of government in the US states: does party ideology matter?," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(4), pages 687-714, August.
    13. Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 226, University of California, Davis, Department of Economics.
    14. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    15. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    16. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.
    17. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    18. Björn Kauder & Niklas Potrafke, 2013. "Government Ideology and Tuition Fee Policy: Evidence from the German States," CESifo Economic Studies, CESifo Group, vol. 59(4), pages 628-649, December.
    19. Markus Reischmann, 2016. "Empirical Studies on Public Debt and Fiscal Transfers," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 63, September.
    20. Niklas Potrafke & Markus Reischmann, 2016. "How to Handle the Crisis in Greece? Empirical Evidence Based on a Survey of Economics Experts," CESifo Working Paper Series 5860, CESifo.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.