IDEAS home Printed from https://ideas.repec.org/p/cda/wpaper/226.html
   My bibliography  Save this paper

Robust Inference with Multi-way Clustering

Author

Listed:
  • Jonah B. Gelbach
  • Doug Miller

    (Department of Economics, University of California Davis)

Abstract

In this paper we propose a variance estimator for the OLS estimator as well as for nonlinear estimators such as logit, probit and GMM. This variance estimator en- ables cluster-robust inference when there is two-way or multi-way clustering that is non-nested. The variance estimator extends the standard cluster-robust variance es- timator or sandwich estimator for one-way clustering (e.g. Liang and Zeger (1986), Arellano (1987)) and relies on similar relatively weak distributional assumptions. Our method is easily implemented in statistical packages, such as Stata and SAS, that already o¤er cluster-robust standard errors when there is one-way clustering. The method is demonstrated by a Monte Carlo analysis for a two-way random ef- fects model; a Monte Carlo analysis of a placebo law that extends the state-year e¤ects example of Bertrand et al. (2004) to two dimensions; and by application to studies in the empirical literature where two-way clustering is present.

Suggested Citation

  • Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 226, University of California, Davis, Department of Economics.
  • Handle: RePEc:cda:wpaper:226
    as

    Download full text from publisher

    File URL: https://repec.dss.ucdavis.edu/files/yFBxEZsqorRKQAv3LnQexjov/09-9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth U. Cascio & Diane Whitmore Schanzenbach, 2016. "First in the Class? Age and the Education Production Function," Education Finance and Policy, MIT Press, vol. 11(3), pages 225-250, Summer.
    2. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    3. Pepper, John V., 2002. "Robust inferences from random clustered samples: an application using data from the panel study of income dynamics," Economics Letters, Elsevier, vol. 75(3), pages 341-345, May.
    4. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    5. Benjamin A. Olken & Patrick Barron, 2009. "The Simple Economics of Extortion: Evidence from Trucking in Aceh," Journal of Political Economy, University of Chicago Press, vol. 117(3), pages 417-452, June.
    6. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    7. Davis, Peter, 2002. "Estimating multi-way error components models with unbalanced data structures," Journal of Econometrics, Elsevier, vol. 106(1), pages 67-95, January.
    8. Engelhardt, Gary V. & Kumar, Anil, 2009. "The repeal of the retirement earnings test and the labor supply of older men," Journal of Pension Economics and Finance, Cambridge University Press, vol. 8(4), pages 429-450, October.
    9. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
    10. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    11. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    12. Greenwald, Bruce C., 1983. "A general analysis of bias in the estimated standard errors of least squares coefficients," Journal of Econometrics, Elsevier, vol. 22(3), pages 323-338, August.
    13. Rountree, Brian & Weston, James P. & Allayannis, George, 2008. "Do investors value smooth performance?," Journal of Financial Economics, Elsevier, vol. 90(3), pages 237-251, December.
    14. Kris James Mitchener & Marc D. Weidenmier, 2007. "The Baring Crisis and the Great Latin American Meltdown of the 1890s," NBER Working Papers 13403, National Bureau of Economic Research, Inc.
    15. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    16. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    17. William Rogers, 1993. "Quantile regression standard errors," Stata Technical Bulletin, StataCorp LP, vol. 2(9).
    18. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marika Cabral & Caroline Hoxby, 2012. "The Hated Property Tax: Salience, Tax Rates, and Tax Revolts," NBER Working Papers 18514, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    2. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    3. Rok Spruk, 2019. "The rise and fall of Argentina," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 28(1), pages 1-40, December.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    5. Miroslav Verbič & Rok Spruk, 2019. "Political economy of pension reforms: an empirical investigation," European Journal of Law and Economics, Springer, vol. 47(2), pages 171-232, April.
    6. Rok Spruk & Mitja Kovac, 2018. "Inefficient Growth," Review of Economics and Institutions, Università di Perugia, vol. 9(2).
    7. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    8. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    9. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, Wiley Blackwell, vol. 56(4), pages 1139-1203, September.
    10. Rok Spruk & Mitja Kovac, 2019. "Transaction costs and economic growth under common legal system: State‐level evidence from Mexico," Economics and Politics, Wiley Blackwell, vol. 31(2), pages 240-292, July.
    11. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    12. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    13. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    14. Parente Paulo M.D.C. & Santos Silva João M.C., 2016. "Quantile Regression with Clustered Data," Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 1-15, January.
    15. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    16. Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
    17. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
    18. Joshua D. Angrist & Jörn-Steffen Pischke, 2017. "Undergraduate Econometrics Instruction: Through Our Classes, Darkly," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 125-144, Spring.
    19. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    20. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.

    More about this item

    Keywords

    cluster-robust standard errors; two-way clustering; multi-way clus- tering.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cda:wpaper:226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Letters and Science IT Services Unit). General contact details of provider: https://edirc.repec.org/data/educdus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.