IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Cluster sample inference using sensitivity analysis: the case with few groups

This paper re-examines inference for cluster samples. Sensitivity analysis is proposed as a new method to perform inference when the number of groups is small. Based on estimations using disaggregated data, the sensitivity of the standard errors with respect to the variance of the cluster effects can be examined in order to distinguish a causal effect from random shocks. The method even handles just-identified models. One important example of a just-identified model is the two groups and two time periods difference-in-differences setting. The method allows for different types of correlation over time and between groups in the cluster effects.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ifau.se/upload/pdf/se/2009/wp09-15.pdf
Download Restriction: no

Paper provided by IFAU - Institute for Evaluation of Labour Market and Education Policy in its series Working Paper Series with number 2009:15.

as
in new window

Length: 43 pages
Date of creation: 11 Jun 2009
Date of revision:
Handle: RePEc:hhs:ifauwp:2009_015
Contact details of provider: Postal: IFAU, P O Box 513, SE-751 20 Uppsala, Sweden
Phone: (+46) 18 - 471 70 70
Fax: (+46) 18 - 471 70 71
Web page: http://www.ifau.se/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Orley Ashenfelter & David Card, 1984. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," Working Papers 554, Princeton University, Department of Economics, Industrial Relations Section..
  2. Finkelstein, Amy, 2002. "The effect of tax subsidies to employer-provided supplementary health insurance: evidence from Canada," Journal of Public Economics, Elsevier, vol. 84(3), pages 305-339, June.
  3. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-38, May.
  4. David Card & Alan Krueger, 1993. "Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania," Working Papers 694, Princeton University, Department of Economics, Industrial Relations Section..
  5. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
  6. Meyer, Bruce D & Viscusi, W Kip & Durbin, David L, 1995. "Workers' Compensation and Injury Duration: Evidence from a Natural Experiment," American Economic Review, American Economic Association, vol. 85(3), pages 322-40, June.
  7. Randall Eberts & Kevin Hollenbeck & Joe Stone, 2000. "Teacher Performance Incentives and Student Outcomes," Upjohn Working Papers and Journal Articles 00-65, W.E. Upjohn Institute for Employment Research.
  8. Jonah B. Gelbach & Doug Miller, 2009. "Robust Inference with Multi-way Clustering," Working Papers 99, University of California, Davis, Department of Economics.
  9. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
  10. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
  11. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
  12. Eissa, Nada & Liebman, Jeffrey B, 1996. "Labor Supply Response to the Earned Income Tax Credit," The Quarterly Journal of Economics, MIT Press, vol. 111(2), pages 605-37, May.
  13. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2007. "Bootstrap-Based Improvements for Inference with Clustered Errors," NBER Technical Working Papers 0344, National Bureau of Economic Research, Inc.
  14. Gabor Kezdi, 2005. "Robus Standard Error Estimation in Fixed-Effects Panel Models," Econometrics 0508018, EconWPA.
  15. Hansen, Christian B., 2007. "Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 670-694, October.
  16. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
  17. Alberto Abadie & Alexis Diamond & Jens Hainmueller, 2007. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program," NBER Working Papers 12831, National Bureau of Economic Research, Inc.
  18. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-07, January.
  19. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
  20. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
  21. Greenwald, Bruce C., 1983. "A general analysis of bias in the estimated standard errors of least squares coefficients," Journal of Econometrics, Elsevier, vol. 22(3), pages 323-338, August.
  22. John Copas & Shinto Eguchi, 2001. "Local sensitivity approximations for selectivity bias," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 871-895.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2009_015. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margareta Wicklander)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.