IDEAS home Printed from https://ideas.repec.org/p/vir/virpap/406.html
   My bibliography  Save this paper

Missing Water: Agricultural Stress and Adaptation Strategies in Response to Groundwater Depletion in India

Author

Listed:
  • Sheetal Sekhri

Abstract

Groundwater depletion is becoming a serious policy concern in many developing countries but little is known about the costs of groundwater depletion. I use annual deviations of depth to groundwater from 1999 to 2003 from the 1985-1995 decadal means for Indian districts, to investigate how production and sown area respond to groundwater uctuations. I nd that a 1 meter decline in groundwater in a year reduces food-grain production by 8 percent, water intensive crop production by 9 percent and cash crops by 5 percent. I also use year-to-year transitions of groundwater around a cuto value, at which cost of technology required to access groundwater exogenously increases due to physical constraints, to examine coping mechanisms. I nd that for short run shocks around this cuto , sown area for food-grains and water intensive crops falls by 7 to 8 percent, whereas there is no change for cash crops. I evaluate the e ect of the transition of 10 year means of groundwater around this cuto on exit from farming. I do not nd evidence of exit of marginal or small farmers from agriculture. mitigating e ect.

Suggested Citation

  • Sheetal Sekhri, 2013. "Missing Water: Agricultural Stress and Adaptation Strategies in Response to Groundwater Depletion in India," Virginia Economics Online Papers 406, University of Virginia, Department of Economics.
  • Handle: RePEc:vir:virpap:406
    as

    Download full text from publisher

    File URL: http://repec.as.virginia.edu/RePEc/vir/virpap/papers/virpap406.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheetal Sekhri, 2014. "Wells, Water, and Welfare: The Impact of Access to Groundwater on Rural Poverty and Conflict," American Economic Journal: Applied Economics, American Economic Association, vol. 6(3), pages 76-102, July.
    2. Brozovic, Nicholas & Sunding, David L. & Zilberman, David, 2010. "On the spatial nature of the groundwater pumping externality," Resource and Energy Economics, Elsevier, vol. 32(2), pages 154-164, April.
    3. Reddy, V. Ratna, 2005. "Costs of resource depletion externalities: a study of groundwater overexploitation in Andhra Pradesh, India," Environment and Development Economics, Cambridge University Press, vol. 10(4), pages 533-556, August.
    4. Sheetal Sekhri, 2011. "Public Provision and Protection of Natural Resources: Groundwater Irrigation in Rural India," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 29-55, October.
    5. Varghese, Shalet Korattukudy & Veettil, Prakashan Chellattan & Speelman, Stijn & Buysse, Jeroen & Van Huylenbroeck, Guido, 2013. "Estimating the causal effect of water scarcity on the groundwater use efficiency of rice farming in South India," Ecological Economics, Elsevier, vol. 86(C), pages 55-64.
    6. Richard Hornbeck & Pinar Keskin, 2011. "The Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Climate," NBER Working Papers 17625, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faye, Amy & Msangi, Siwa, 2018. "Rainfall variability and groundwater availability for irrigation in Sub-Saharan Africa: evidence from the Niayes region of Senegal," MPRA Paper 92625, University Library of Munich, Germany.
    2. Ghadir Asadi & Mohammad H. Mostafavi-Dehzooei, 2022. "The Role of Learning in Adaptation to Technology: The Case of Groundwater Extraction," Sustainability, MDPI, vol. 14(12), pages 1-37, June.
    3. Zaveri, Esha & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2016. "Water in the Balance: The Impact of Water Infrastructure on Agricultural Adaptation to Rainfall Shocks in India," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236216, Agricultural and Applied Economics Association.
    4. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    5. Sheetal Sekhri & Paul Landefeld, 2013. "Agricultural Trade, Institutions, and Depletion of Natural Resources," Virginia Economics Online Papers 405, University of Virginia, Department of Economics.
    6. Sekhri, Sheetal, 2022. "Agricultural trade and depletion of groundwater," Journal of Development Economics, Elsevier, vol. 156(C).
    7. Gautam, Madhur, 2015. "Agricultural Subsidies: Resurging Interest in a Perennial Debate," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 70(1), pages 1-23.
    8. Zaveri, Esha D. & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2020. "The impact of water access on short-term migration in rural India," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayre, Susan Stratton & Taraz, Vis, 2019. "Groundwater depletion in India: Social losses from costly well deepening," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 85-100.
    2. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    3. Zaveri, Esha D. & Wrenn, Douglas H. & Fisher-Vanden, Karen, 2020. "The impact of water access on short-term migration in rural India," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    4. Guilfoos, Todd & Garnache, Cloe & Suter, Jordan F. & Merrill, Nathaniel H., 2017. "Efficiency Gains Arising from Dynamic Groundwater Markets," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258438, Agricultural and Applied Economics Association.
    5. Gholamreza Soltani & Mahmood Saboohi, 2009. "Economic and Social Impacts of Groundwater Overdraft: The Case of Iran," Working Papers 479, Economic Research Forum, revised Mar 2009.
    6. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    7. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    8. Ghadir Asadi & Mohammad H. Mostafavi-Dehzooei, 2022. "The Role of Learning in Adaptation to Technology: The Case of Groundwater Extraction," Sustainability, MDPI, vol. 14(12), pages 1-37, June.
    9. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    10. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    11. Koundouri, Phoebe & Roseta-Palma, Catarina & Englezos, Nikolaos, 2017. "Out of Sight, Not Out of Mind: Developments in Economic Models of Groundwater Management," International Review of Environmental and Resource Economics, now publishers, vol. 11(1), pages 55-96, October.
    12. James Roumasset & Christopher Wada, 2012. "The Economics of Groundwater," Working Papers 201211, University of Hawaii at Manoa, Department of Economics.
    13. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    14. Richard Hornbeck & Pinar Keskin, 2015. "Does Agriculture Generate Local Economic Spillovers? Short-Run and Long-Run Evidence from the Ogallala Aquifer," American Economic Journal: Economic Policy, American Economic Association, vol. 7(2), pages 192-213, May.
    15. Shaneyfelt, Calvin R. & Schoengold, Dr. Karina, 2014. "Irrigation Demand in a Changing Climate: Using disaggregate data to predict future groundwater use," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170586, Agricultural and Applied Economics Association.
    16. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    17. Christopher Costello & Nicolas Querou & Agnès Tomini, 2014. "Spatial concessions with limited tenure," Post-Print hal-01123392, HAL.
    18. Komeda, Kenji, 2021. "Environmental Factors and Internal Migration in India," Warwick-Monash Economics Student Papers 20, Warwick Monash Economics Student Papers.
    19. Bartoš, Vojtěch, 2021. "Seasonal scarcity and sharing norms," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 303-316.
    20. Guilfoos, Todd & Pape, Andreas D. & Khanna, Neha & Salvage, Karen, 2013. "Groundwater management: The effect of water flows on welfare gains," Ecological Economics, Elsevier, vol. 95(C), pages 31-40.

    More about this item

    Keywords

    Groundwater Depletion; Agricultural Production; India;
    All these keywords.

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vir:virpap:406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Debby Stanford (email available below). General contact details of provider: http://www.virginia.edu/economics/home.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.