IDEAS home Printed from https://ideas.repec.org/p/uto/labeco/202002.html
   My bibliography  Save this paper

Are Green Inventions really more complex? Evidence from European Patents

Author

Abstract

A large body of existing literature extensively studied the economic deter-minants and effects of environmental innovations. However, only a few studiesanalyzed the specific features of green technologies in the early phasesof theinvention process. The aim of this paper is to investigate knowledgerecombi-nation patterns in the green domain. The focus is on identifying whether andhow different bodies of technology are combined and integrated. Exploitinga large sample of European patent data, from 1980 to 2012, the paper inves-tigates the degree of diversity in the knowledge sources and the generationphase of green inventions. Using the Integration Score as an index of techno-logical diversity we compare the recombinant features of Green Technologieswith a control sample of “Traditional Technologies”, accurately drawn fromthe universe of all patent applications. Empirical results suggest that, aftercontrolling for a number of typical characteristics which may affect diversity,Green Technologies systematically show a higher degree of diversitywhencompared to non-green ones.

Suggested Citation

  • Fusillo, Fabrizio, 2020. "Are Green Inventions really more complex? Evidence from European Patents," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 202002, University of Turin.
  • Handle: RePEc:uto:labeco:202002
    as

    Download full text from publisher

    File URL: https://www.est.unito.it/do/home.pl/Download?doc=/allegati/wp2020dip/wp_15_2020.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Vanessa Oltra & Maider Saint Jean, 2005. "Environmental innovation and clean technology: an evolutionary framework," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 8(3), pages 153-172.
    3. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    4. Si Hyung Joo & Yeonbae Kim, 2010. "Measuring relatedness between technological fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(2), pages 435-454, May.
    5. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    6. F. Fusillo & F. Quatraro & S. Usai, 2019. "Going Green: Environmental Regulation, eco-innovation and technological alliances," Working Paper CRENoS 201907, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    8. Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, "undated". "Knowledge spillovers from clean and dirty technologies: a patent citation analysis," SIMPATIC Working Papers 954, Bruegel.
    9. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    10. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Claudia Ghisetti & Francesco Quatraro, 2015. "Regulatory Push-pull Effects on Innovation: An Evaluation of the Effects of the REACH Regulation on Patents in the Chemical Sector. WWWforEurope Working Paper No. 91," WIFO Studies, WIFO, number 58132, February.
    12. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    13. Uwe Cantner & Andreas Meder, 2007. "Technological proximity and the choice of cooperation partner," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(1), pages 45-65, June.
    14. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    15. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    16. De Marchi, Valentina, 2012. "Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms," Research Policy, Elsevier, vol. 41(3), pages 614-623.
    17. Olsson, Ola, 2000. "Knowledge as a Set in Idea Space: An Epistemological View on Growth," Journal of Economic Growth, Springer, vol. 5(3), pages 253-275, September.
    18. repec:bre:wpaper:954 is not listed on IDEAS
    19. Corrocher, Nicoletta & Malerba, Franco & Montobbio, Fabio, 2007. "Schumpeterian patterns of innovative activity in the ICT field," Research Policy, Elsevier, vol. 36(3), pages 418-432, April.
    20. Loet Leydesdorff, 2008. "Patent classifications as indicators of intellectual organization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(10), pages 1582-1597, August.
    21. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    22. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    23. Jeff Alstott & Giorgio Triulzi & Bowen Yan & Jianxi Luo, 2017. "Mapping technology space by normalizing patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 443-479, January.
    24. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    25. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    26. Carrión-Flores, Carmen E. & Innes, Robert & Sam, Abdoul G., 2013. "Do voluntary pollution reduction programs (VPRs) spur or deter environmental innovation? Evidence from 33/50," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 444-459.
    27. Quatraro, Francesco, 2010. "Knowledge coherence, variety and economic growth: Manufacturing evidence from Italian regions," Research Policy, Elsevier, vol. 39(10), pages 1289-1302, December.
    28. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    29. Archibugi, Daniele & Pianta, Mario, 1994. "Aggregate Convergence and Sectoral Specialization in Innovation," Journal of Evolutionary Economics, Springer, vol. 4(1), pages 17-33, March.
    30. David J. Teece & Richard Rumelt & Giovanni Dosi & Sidney Winter, 2000. "Understanding Corporate Coherence: Theory and Evidence," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 9, pages 264-293, Edward Elgar Publishing.
    31. Nicholas S. Argyres & Brian S. Silverman, 2004. "R&D, organization structure, and the development of corporate technological knowledge," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 929-958, August.
    32. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).
    33. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    34. Appio, Francesco Paolo & Martini, Antonella & Fantoni, Gualtiero, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 154-165.
    35. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    36. Koen Frenken & Frank Van Oort & Thijs Verburg, 2007. "Related Variety, Unrelated Variety and Regional Economic Growth," Regional Studies, Taylor & Francis Journals, vol. 41(5), pages 685-697.
    37. Dieter F. Kogler & David L. Rigby & Isaac Tucker, 2013. "Mapping Knowledge Space and Technological Relatedness in US Cities," European Planning Studies, Taylor & Francis Journals, vol. 21(9), pages 1374-1391, September.
    38. Bowen Yan & Jianxi Luo, 2017. "Measuring technological distance for patent mapping," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(2), pages 423-437, February.
    39. Ron Boschma & Asier Minondo & Mikel Navarro, 2012. "Related variety and regional growth in Spain," Papers in Regional Science, Wiley Blackwell, vol. 91(2), pages 241-256, June.
    40. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    41. Matthew L. Wallace & Yves Gingras & Russell Duhon, 2009. "A new approach for detecting scientific specialties from raw cocitation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 240-246, February.
    42. Paolo Zeppini & Jeroen C. J. M. van den Bergh, 2011. "Competing Recombinant Technologies for Environmental Innovation: Extending Arthur's Model of Lock-In," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 317-334.
    43. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    44. Alessandra Colombelli & Francesco Quatraro, 2019. "Green start-ups and local knowledge spillovers from clean and dirty technologies," Small Business Economics, Springer, vol. 52(4), pages 773-792, April.
    45. Nick Johnstone (ed.), 2007. "Environmental Policy and Corporate Behaviour," Books, Edward Elgar Publishing, number 12551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Santoalha & Ron Boschma, 2021. "Diversifying in green technologies in European regions: does political support matter?," Regional Studies, Taylor & Francis Journals, vol. 55(2), pages 182-195, February.
    2. Ascione, Grazia Sveva, 2023. "Technological diversity to address complex challenges: the contribution of American universities to sdgs," MPRA Paper 119452, University Library of Munich, Germany.
    3. Belmartino, Andrea, 2022. "Green & non-green relatedness: challenges and diversification opportunities for regional economies in Argentina," Nülan. Deposited Documents 3697, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fusillo, Fabrizio, 2023. "Green Technologies and diversity in the knowledge search and output phases: Evidence from European Patents," Research Policy, Elsevier, vol. 52(4).
    2. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).
    3. Ascione, Grazia Sveva, 2023. "Technological diversity to address complex challenges: the contribution of American universities to sdgs," MPRA Paper 119452, University Library of Munich, Germany.
    4. Eva Coll-Martínez & Malia Kedjar & Patricia Renou-Maissant, 2022. "(Green) Knowledge spillovers and regional environmental support: do they matter for the entry of new green tech-based firms?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(1), pages 119-161, August.
    5. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    6. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    7. Alba Marino & Francesco Quatraro, 2023. "Leveraging global recombinant capabilities for green technologies: the role of ethnic diversity in MNEs’ dynamics," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1413-1445, August.
    8. Alessandra Colombelli & Francesco Quatraro, 2019. "Green start-ups and local knowledge spillovers from clean and dirty technologies," Small Business Economics, Springer, vol. 52(4), pages 773-792, April.
    9. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    10. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    11. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    12. Jeff Alstott & Giorgio Triulzi & Bowen Yan & Jianxi Luo, 2017. "Mapping technology space by normalizing patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 443-479, January.
    13. Colombelli, Alessandra & Quatraro, Francesco, 2018. "New firm formation and regional knowledge production modes: Italian evidence," Research Policy, Elsevier, vol. 47(1), pages 139-157.
    14. Eva Coll-Martinez & Malia Kedjar & Patricia Renou-Maissant, 2020. "Location Determinants Of Ecoinnovative Firms In France," Working Papers 2020.02, International Network for Economic Research - INFER.
    15. Gianluca Orsatti & François Perruchas & Davide Consoli & Francesco Quatraro, 2020. "Public Procurement, Local Labor Markets and Green Technological Change. Evidence from US Commuting Zones," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 711-739, April.
    16. Antonelli, Cristiano & Krafft, Jackie & Quatraro, Francesco, 2010. "Recombinant knowledge and growth: The case of ICTs," Structural Change and Economic Dynamics, Elsevier, vol. 21(1), pages 50-69, March.
    17. Alessandra Colombelli & Francesco Quatraro, 2013. "New Firm Formation and the properties of local knowledge bases: Evidence from Italian NUTS 3 regions," Working Papers hal-00858989, HAL.
    18. Dieter F. Kogler & Jürgen Essletzbichler & David L. Rigby, 2017. "The evolution of specialization in the EU15 knowledge space," Journal of Economic Geography, Oxford University Press, vol. 17(2), pages 345-373.
    19. Kim, Seung Hwan & Jun, Bogang & Lee, Jeong-Dong, 2021. "Technological relatedness: How do firms diversify their technology?," SocArXiv 47ank, Center for Open Science.
    20. Petralia, Sergio & Balland, Pierre-Alexandre & Morrison, Andrea, 2017. "Climbing the ladder of technological development," Research Policy, Elsevier, vol. 46(5), pages 956-969.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uto:labeco:202002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Piero Cavaleri or Marina Grazioli (email available below). General contact details of provider: https://edirc.repec.org/data/leifrit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.