IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Prognose uni- und multivariater Zeitreihen

  • Manfred Deistler
  • Klaus Neusser

Der Aufsatz bietet eine Zusammenfassung der theoretischen Grundlagen der linearen Kleinst-Quadrate-Prognose im Kontext von stationären Prozessen, insbesondere im Zusammenhang von ARMA bzw. ARMAX Systemen. In einem ersten Schritt wird das Prognoseproblem unter der Voraussetzung, dass die zweiten Momente bekannt sind, behandelt. Da diese jedoch meist nicht bekannt sind, geht das Prognoseproblem mit einem Identifikationsproblem einher. Dieses Problem wird eingehend anhand von multivariaten AR-, ARMA- und ARMAX-System erläutert. Da bei der praktischen Anwendung noch andere Gesichtspunkte (a priori Information, Fristigkeit, Aufwand, Geschwindigkeit, etc.) eine Rolle spielen und die Methoden daher eventuell adaptiert werden müssen, werden einige bei der praktischen Anwendung auftretende Probleme anhand der Prognose makroökonomischer und betriebswirtschaftlicher Zeitreihen (Absatzprognose) kurz illustriert.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universitaet Bern, Departement Volkswirtschaft in its series Diskussionsschriften with number dp0401.

in new window

Date of creation: Jan 2004
Date of revision:
Handle: RePEc:ube:dpvwib:dp0401
Contact details of provider: Postal: Schanzeneckstr. 1, PF 8573, CH-3001 Bern
Phone: 0041 31 631 45 06
Fax: 41 31 631 37 83
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christopher A. Sims, 1989. "A nine variable probabilistic macroeconomic forecasting model," Discussion Paper / Institute for Empirical Macroeconomics 14, Federal Reserve Bank of Minneapolis.
  2. Kunst, Robert & Neusser, Klaus, 1986. "A forecasting comparison of some var techniques," International Journal of Forecasting, Elsevier, vol. 2(4), pages 447-456.
  3. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
  4. David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Series Working Papers 78, University of Oxford, Department of Economics.
  5. Peter F. Christoffersen & Francis X. Diebold, . "Optimal Prediction Under Asymmetric Loss," CARESS Working Papres 97-20, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  6. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144 Elsevier.
  7. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  8. Klaus NEUSSER, 1990. "Testing the Long-Run Implications of the Neoclassical Growth Model," Vienna Economics Papers vie9002, University of Vienna, Department of Economics.
  9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-38, July.
  10. Ray C. Fair, 1978. "An Analysis of the Accuracy of Four Macroeconometric Models," Cowles Foundation Discussion Papers 492, Cowles Foundation for Research in Economics, Yale University.
  11. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
  12. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp0401. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Silvia Glusstein-Gerber)

The email address of this maintainer does not seem to be valid anymore. Please ask Silvia Glusstein-Gerber to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.