IDEAS home Printed from https://ideas.repec.org/p/ube/dpvwib/dp0401.html
   My bibliography  Save this paper

Prognose uni- und multivariater Zeitreihen

Author

Listed:
  • Manfred Deistler
  • Klaus Neusser

Abstract

Der Aufsatz bietet eine Zusammenfassung der theoretischen Grundlagen der linearen Kleinst-Quadrate-Prognose im Kontext von station ren Prozessen, insbesondere im Zusammenhang von ARMA bzw. ARMAX Systemen. In einem ersten Schritt wird das Prognoseproblem unter der Voraussetzung, dass die zweiten Momente bekannt sind, behandelt. Da diese jedoch meist nicht bekannt sind, geht das Prognoseproblem mit einem Identifikationsproblem einher. Dieses Problem wird eingehend anhand von multivariaten AR-, ARMA- und ARMAX-System erl utert. Da bei der praktischen Anwendung noch andere Gesichtspunkte (a priori Information, Fristigkeit, Aufwand, Geschwindigkeit, etc.) eine Rolle spielen und die Methoden daher eventuell adaptiert werden m ssen, werden einige bei der praktischen Anwendung auftretende Probleme anhand der Prognose makro konomischer und betriebswirtschaftlicher Zeitreihen (Absatzprognose) kurz illustriert.

Suggested Citation

  • Manfred Deistler & Klaus Neusser, 2004. "Prognose uni- und multivariater Zeitreihen," Diskussionsschriften dp0401, Universitaet Bern, Departement Volkswirtschaft.
  • Handle: RePEc:ube:dpvwib:dp0401
    as

    Download full text from publisher

    File URL: https://repec.vwiit.ch/dp/dp0401.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    2. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    3. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    4. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    5. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    6. Neusser, Klaus, 1991. "Testing the long-run implications of the neoclassical growth model," Journal of Monetary Economics, Elsevier, vol. 27(1), pages 3-37, February.
    7. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    8. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    9. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    10. Fair, Ray C, 1979. "An Analysis of the Accuracy of Four Macroeconometric Models," Journal of Political Economy, University of Chicago Press, vol. 87(4), pages 701-718, August.
    11. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    12. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    13. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144, Elsevier.
    14. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    17. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    18. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    19. Kunst, Robert & Neusser, Klaus, 1986. "A forecasting comparison of some var techniques," International Journal of Forecasting, Elsevier, vol. 2(4), pages 447-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    2. Garratt, Anthony & Lee, Kevin C & Pesaran, M. Hashem & Shin, Yongcheol, 1998. "A Structural Cointegrating VAR Approach to Macroeconometric Modelling," Cambridge Working Papers in Economics 9823, Faculty of Economics, University of Cambridge.
    3. Enrique M. Quilis(1), "undated". "Modelos Bvar: Especificación, Estimación E Inferencia," Working Papers 8-02 Classification-JEL :, Instituto de Estudios Fiscales.
    4. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    5. Tomasz Wozniak, 2016. "Rare Events and Risk Perception: Evidence from Fukushima Accident," Department of Economics - Working Papers Series 2021, The University of Melbourne.
    6. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    7. Committee, Nobel Prize, 2011. "Thomas J. Sargent and Christopher A. Sims: Empirical Macroeconomics," Nobel Prize in Economics documents 2011-2, Nobel Prize Committee.
    8. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    10. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    11. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    12. Kim, Kun Ho, 2011. "Density forecasting through disaggregation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 394-412.
    13. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    14. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    15. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    16. Marek Jarociński & Bartosz Maćkowiak, 2017. "Granger Causal Priority and Choice of Variables in Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 319-329, May.
    17. Kim, Kun Ho, 2011. "Density forecasting through disaggregation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 394-412, April.
    18. Bandyopadhyay, Subir, 2009. "A Dynamic Model of Cross-Category Competition: Theory, Tests and Applications," Journal of Retailing, Elsevier, vol. 85(4), pages 468-479.
    19. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    20. Allen, P. Geoffrey & Morzuch, Bernard J., 2006. "Twenty-five years of progress, problems, and conflicting evidence in econometric forecasting. What about the next 25 years?," International Journal of Forecasting, Elsevier, vol. 22(3), pages 475-492.

    More about this item

    Keywords

    Prognose; Identifikation; ARMAX-Systeme;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp0401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Franz Koelliker (email available below). General contact details of provider: https://edirc.repec.org/data/vwibech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.