IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Modelos Bvar: Especificación, Estimación E Inferencia

  • Enrique M. Quilis(1)


    (Instituto Nacional de Estadística)

Registered author(s):

    . En este trabajo se analiza, en primer lugar, la especificación bayesiana de los vectores de autorregresiones (BVAR), tomando como punto de partida los modelos VAR no restringidos y las técnicas de estimación contraída. A continuación, se detalla su estimación como un caso especial del método de estimación mixta de Theil. El texto toma como hilo conductor la especificación a priori propuesta por Litterman así como su extensión al caso estacional elaborada por Raynauld y Simonato. Esta última abre interesantes perspectivas para el uso de estos modelos en el análisis de la coyuntura económica. El trabajo también examina la determinación de los hiperparámetros que controlan la especificación a priori (calibrado) junto con la relación existente entre los modelos BVAR y los VARMA. Finalmente, se expone el uso inferencial de los modelos BVAR para el análisis de cointegración.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Instituto de Estudios Fiscales in its series Working Papers with number 8-02 Classification-JEL : C110, C320, C500..

    in new window

    Date of creation:
    Date of revision:
    Handle: RePEc:hpe:wpaper:y:2002:i:8
    Contact details of provider: Postal:
    Avda. Cardenal Herrera Oria, 378, 28035 Madrid

    Phone: 91-339.89.15
    Fax: 91-339.89.64
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    2. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
    3. Raynauld, Jacques & Simonato, Jean-Guy, 1993. "Seasonal BVAR models : A search along some time domain priors," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 203-229.
    4. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    5. Bewley, Ronald & Orden, David & Yang, Minxian & Fisher, Lance A., 1994. "Comparison of Box--Tiao and Johansen canonical estimators of cointegrating vectors in VEC(1) models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 3-27.
    6. John C. Robertson & Ellis W. Tallman, 1999. "Vector autoregressions: forecasting and reality," Economic Review, Federal Reserve Bank of Atlanta, issue Q1, pages 4-18.
    7. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-42, October.
    8. Harvey, Andrew & Scott, Andrew, 1994. "Seasonality in Dynamic Regression Models," Economic Journal, Royal Economic Society, vol. 104(427), pages 1324-45, November.
    9. Olivier Jean Blanchard & Danny Quah, 1988. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," NBER Working Papers 2737, National Bureau of Economic Research, Inc.
    10. Gonzalo, Jesus, 1994. "Five alternative methods of estimating long-run equilibrium relationships," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 203-233.
    11. Thomas J. Sargent, 1979. "Estimating vector autoregressions using methods not based on explicit economic theories," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Sum.
    12. Claude Deniau & Georges Fiori & Alexandre Mathis, 1992. "Sélection du nombre de retards dans un modèle VAR : conséquences éventuelles du choix des critères," Économie et Prévision, Programme National Persée, vol. 106(5), pages 61-69.
    13. Blanchard, Olivier Jean, 1989. "A Traditional Interpretation of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 79(5), pages 1146-64, December.
    14. Canova, Fabio, 1992. "An Alternative Approach to Modeling and Forecasting Seasonal Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 97-108, January.
    15. Maravall, Agustin, 1993. "Stochastic linear trends : Models and estimators," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 5-37, March.
    16. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    17. Luis J. Álvarez & Fernando C. Ballabriga, 1994. "BVAR models in the context of cointegration: A Monte Carlo experiment," Working Papers 9405, Banco de España;Working Papers Homepage.
    18. Litterman, Robert B & Weiss, Laurence M, 1985. "Money, Real Interest Rates, and Output: A Reinterpretation of Postwar U.S. Data," Econometrica, Econometric Society, vol. 53(1), pages 129-56, January.
    19. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    20. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454, October.
    21. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hpe:wpaper:y:2002:i:8. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Belén Miquel Burgos)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.