IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Stock Market Averages to Enhance Profitable Trading Strategies


  • Christian Haefke
  • Christian Helmenstein

    () (Department of Economics, Institute for Advanced Studies, Vienna)


In this paper we design a simple trading strategy to exploit the hypothesized distinct informational content of the arithmetic and geometric mean. The rejection of cointegration between the two stock market indicators supports this conjecture. The profits generated by this cheaply replicable trading scheme cannot be expected to persist. Therefore we forecast the averages using autoregressive linear and neural network models to gain a competitive advantage relative to other investors. Refining the trading scheme using the forecasts further increases the mean return as compared to a buy and hold strategy. One of the most prominent mysteries of present day finance is the ample usage of such simple and dated concepts as the arithmetic and the geometric means as proxies for the aggregate price dynamics of leading international stock markets. While such undertakings may find their explanation, though not justification, in the inertia of the finance community to adopt more modern index concepts, it is even more astounding that during the last decade of the twentieth century some newly implemented stock market indexes are still constructed in the tradition of these principles.

Suggested Citation

  • Christian Haefke & Christian Helmenstein, "undated". "Forecasting Stock Market Averages to Enhance Profitable Trading Strategies," Computing in Economics and Finance 1996 _023, Society for Computational Economics.
  • Handle: RePEc:sce:scecf6:_023

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf6:_023. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.