IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/46_13.html
   My bibliography  Save this paper

Mixed Data Kernel Copulas

Author

Listed:
  • Jeffrey S. Racine

    () (McMaster University, Canada)

Abstract

A number of approaches towards the kernel estimation of copula have appeared in the literature. Most existing approaches use a manifestation of the copula that requires kernel density estimation of bounded variates lying on a d-dimensional unit hypercube. This gives rise to a number of issues as it requires special treatment of the boundary and possible modifications to bandwidth selection routines, among others. Furthermore, existing kernel-based approaches are restricted to continuous date types only, though there is a growing interest in copula estimation with discrete marginals (see e.g. Smith & Khaled (2012) for a Bayesian approach). We demonstrate that using a simple inversion method (cf Nelsen (2006), Fermanian & Scaillet (2003)) can sidestep boundary issues while admitting mixed data types directly thereby extending the reach of kernel copula estimators. Bandwidth selection proceeds by the recently proposed method of Li & Racine (2013). Furthermore, there is no curse-of-dimensionality for the kernel-based copula estimator (though there is for the copula density estimator, as is the case for existing kernel copula density methods).

Suggested Citation

  • Jeffrey S. Racine, 2013. "Mixed Data Kernel Copulas," Working Paper series 46_13, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:46_13
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp46_13.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    2. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    3. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    4. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    7. H. G. Müller & U. Stadtmüller, 1999. "Multivariate boundary kernels and a continuous least squares principle," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 439-458.
    8. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    9. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    10. Michael S. Smith & Mohamad A. Khaled, 2012. "Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 290-303, March.
    11. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    12. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    13. Olivier Scaillet, 2005. "A Kolmogorov-Smirnov Type Test for Positive Quadrant Dependence," FAME Research Paper Series rp128, International Center for Financial Asset Management and Engineering.
    14. Michel Denuit, 2004. "Nonparametric Tests for Positive Quadrant Dependence," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 422-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jjrfmx:v:11:y:2018:i:2:p:29-:d:151386 is not listed on IDEAS
    2. repec:bla:irvfin:v:17:y:2017:i:1:p:155-162 is not listed on IDEAS
    3. Kim Huynh & David Jacho-Chávez & Robert Petrunia & Marcel Voia, 2015. "A nonparametric analysis of firm size, leverage and labour productivity distribution dynamics," Empirical Economics, Springer, vol. 48(1), pages 337-360, February.
    4. repec:eee:ecmode:v:70:y:2018:i:c:p:301-309 is not listed on IDEAS
    5. Fousekis, Panos & Grigoriadis, Vasilis, 2016. "Spatial price dependence by time scale: Empirical evidence from the international butter markets," Economic Modelling, Elsevier, vol. 54(C), pages 195-204.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:46_13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.